MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1detdiag Structured version   Visualization version   Unicode version

Theorem m1detdiag 20403
Description: The determinant of a 1-dimensional matrix equals its (single) entry. (Contributed by AV, 6-Aug-2019.)
Hypotheses
Ref Expression
mdetdiag.d  |-  D  =  ( N maDet  R )
mdetdiag.a  |-  A  =  ( N Mat  R )
mdetdiag.b  |-  B  =  ( Base `  A
)
Assertion
Ref Expression
m1detdiag  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  ( D `  M )  =  ( I M I ) )

Proof of Theorem m1detdiag
Dummy variables  b  p  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetdiag.d . . . 4  |-  D  =  ( N maDet  R )
2 mdetdiag.a . . . 4  |-  A  =  ( N Mat  R )
3 mdetdiag.b . . . 4  |-  B  =  ( Base `  A
)
4 eqid 2622 . . . 4  |-  ( Base `  ( SymGrp `  N )
)  =  ( Base `  ( SymGrp `  N )
)
5 eqid 2622 . . . 4  |-  ( ZRHom `  R )  =  ( ZRHom `  R )
6 eqid 2622 . . . 4  |-  (pmSgn `  N )  =  (pmSgn `  N )
7 eqid 2622 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
8 eqid 2622 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
91, 2, 3, 4, 5, 6, 7, 8mdetleib 20393 . . 3  |-  ( M  e.  B  ->  ( D `  M )  =  ( R  gsumg  ( p  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( p `  x ) M x ) ) ) ) ) ) )
1093ad2ant3 1084 . 2  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  ( D `  M )  =  ( R  gsumg  ( p  e.  ( Base `  ( SymGrp `
 N ) ) 
|->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  p )
( .r `  R
) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( p `  x ) M x ) ) ) ) ) ) )
11 fveq2 6191 . . . . . . . . 9  |-  ( N  =  { I }  ->  ( SymGrp `  N )  =  ( SymGrp `  {
I } ) )
1211fveq2d 6195 . . . . . . . 8  |-  ( N  =  { I }  ->  ( Base `  ( SymGrp `
 N ) )  =  ( Base `  ( SymGrp `
 { I }
) ) )
1312adantr 481 . . . . . . 7  |-  ( ( N  =  { I }  /\  I  e.  V
)  ->  ( Base `  ( SymGrp `  N )
)  =  ( Base `  ( SymGrp `  { I } ) ) )
14133ad2ant2 1083 . . . . . 6  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  ( Base `  ( SymGrp `  N
) )  =  (
Base `  ( SymGrp `  { I } ) ) )
15 simp2r 1088 . . . . . . 7  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  I  e.  V )
16 eqid 2622 . . . . . . . 8  |-  ( SymGrp `  { I } )  =  ( SymGrp `  {
I } )
17 eqid 2622 . . . . . . . 8  |-  ( Base `  ( SymGrp `  { I } ) )  =  ( Base `  ( SymGrp `
 { I }
) )
18 eqid 2622 . . . . . . . 8  |-  { I }  =  { I }
1916, 17, 18symg1bas 17816 . . . . . . 7  |-  ( I  e.  V  ->  ( Base `  ( SymGrp `  {
I } ) )  =  { { <. I ,  I >. } }
)
2015, 19syl 17 . . . . . 6  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  ( Base `  ( SymGrp `  {
I } ) )  =  { { <. I ,  I >. } }
)
2114, 20eqtrd 2656 . . . . 5  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  ( Base `  ( SymGrp `  N
) )  =  { { <. I ,  I >. } } )
2221mpteq1d 4738 . . . 4  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
p  e.  ( Base `  ( SymGrp `  N )
)  |->  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( p `  x
) M x ) ) ) ) )  =  ( p  e. 
{ { <. I ,  I >. } }  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( p `  x
) M x ) ) ) ) ) )
23 snex 4908 . . . . . 6  |-  { <. I ,  I >. }  e.  _V
2423a1i 11 . . . . 5  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  { <. I ,  I >. }  e.  _V )
25 ovex 6678 . . . . 5  |-  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  { <. I ,  I >. } ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x
) M x ) ) ) )  e. 
_V
26 fveq2 6191 . . . . . . . 8  |-  ( p  =  { <. I ,  I >. }  ->  (
( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p )  =  ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  { <. I ,  I >. } ) )
27 fveq1 6190 . . . . . . . . . . 11  |-  ( p  =  { <. I ,  I >. }  ->  (
p `  x )  =  ( { <. I ,  I >. } `  x ) )
2827oveq1d 6665 . . . . . . . . . 10  |-  ( p  =  { <. I ,  I >. }  ->  (
( p `  x
) M x )  =  ( ( {
<. I ,  I >. } `
 x ) M x ) )
2928mpteq2dv 4745 . . . . . . . . 9  |-  ( p  =  { <. I ,  I >. }  ->  (
x  e.  N  |->  ( ( p `  x
) M x ) )  =  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x ) M x ) ) )
3029oveq2d 6666 . . . . . . . 8  |-  ( p  =  { <. I ,  I >. }  ->  (
(mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( p `  x
) M x ) ) )  =  ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x
) M x ) ) ) )
3126, 30oveq12d 6668 . . . . . . 7  |-  ( p  =  { <. I ,  I >. }  ->  (
( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( p `  x
) M x ) ) ) )  =  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  { <. I ,  I >. } ) ( .r `  R ) ( (mulGrp `  R
)  gsumg  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x ) M x ) ) ) ) )
3231fmptsng 6434 . . . . . 6  |-  ( ( { <. I ,  I >. }  e.  _V  /\  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  { <. I ,  I >. } ) ( .r `  R ) ( (mulGrp `  R
)  gsumg  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x ) M x ) ) ) )  e.  _V )  ->  { <. { <. I ,  I >. } ,  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  { <. I ,  I >. } ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x
) M x ) ) ) ) >. }  =  ( p  e.  { { <. I ,  I >. } }  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( p `  x
) M x ) ) ) ) ) )
3332eqcomd 2628 . . . . 5  |-  ( ( { <. I ,  I >. }  e.  _V  /\  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  { <. I ,  I >. } ) ( .r `  R ) ( (mulGrp `  R
)  gsumg  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x ) M x ) ) ) )  e.  _V )  -> 
( p  e.  { { <. I ,  I >. } }  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( p `  x
) M x ) ) ) ) )  =  { <. { <. I ,  I >. } , 
( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  { <. I ,  I >. } ) ( .r `  R ) ( (mulGrp `  R
)  gsumg  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x ) M x ) ) ) )
>. } )
3424, 25, 33sylancl 694 . . . 4  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
p  e.  { { <. I ,  I >. } }  |->  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( p `  x
) M x ) ) ) ) )  =  { <. { <. I ,  I >. } , 
( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  { <. I ,  I >. } ) ( .r `  R ) ( (mulGrp `  R
)  gsumg  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x ) M x ) ) ) )
>. } )
35 eqid 2622 . . . . . . . . . . . . 13  |-  ( SymGrp `  N )  =  (
SymGrp `  N )
36 eqid 2622 . . . . . . . . . . . . 13  |-  { b  e.  ( Base `  ( SymGrp `
 N ) )  |  dom  ( b 
\  _I  )  e. 
Fin }  =  {
b  e.  ( Base `  ( SymGrp `  N )
)  |  dom  (
b  \  _I  )  e.  Fin }
3735, 4, 36, 6psgnfn 17921 . . . . . . . . . . . 12  |-  (pmSgn `  N )  Fn  {
b  e.  ( Base `  ( SymGrp `  N )
)  |  dom  (
b  \  _I  )  e.  Fin }
3819adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( N  =  { I }  /\  I  e.  V
)  ->  ( Base `  ( SymGrp `  { I } ) )  =  { { <. I ,  I >. } } )
3913, 38eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( N  =  { I }  /\  I  e.  V
)  ->  ( Base `  ( SymGrp `  N )
)  =  { { <. I ,  I >. } } )
40393ad2ant2 1083 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  ( Base `  ( SymGrp `  N
) )  =  { { <. I ,  I >. } } )
41 rabeq 3192 . . . . . . . . . . . . . . 15  |-  ( (
Base `  ( SymGrp `  N ) )  =  { { <. I ,  I >. } }  ->  { b  e.  ( Base `  ( SymGrp `  N )
)  |  dom  (
b  \  _I  )  e.  Fin }  =  {
b  e.  { { <. I ,  I >. } }  |  dom  (
b  \  _I  )  e.  Fin } )
4240, 41syl 17 . . . . . . . . . . . . . 14  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  { b  e.  ( Base `  ( SymGrp `
 N ) )  |  dom  ( b 
\  _I  )  e. 
Fin }  =  {
b  e.  { { <. I ,  I >. } }  |  dom  (
b  \  _I  )  e.  Fin } )
43 difeq1 3721 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  { <. I ,  I >. }  ->  (
b  \  _I  )  =  ( { <. I ,  I >. }  \  _I  ) )
4443dmeqd 5326 . . . . . . . . . . . . . . . . 17  |-  ( b  =  { <. I ,  I >. }  ->  dom  ( b  \  _I  )  =  dom  ( {
<. I ,  I >. } 
\  _I  ) )
4544eleq1d 2686 . . . . . . . . . . . . . . . 16  |-  ( b  =  { <. I ,  I >. }  ->  ( dom  ( b  \  _I  )  e.  Fin  <->  dom  ( {
<. I ,  I >. } 
\  _I  )  e. 
Fin ) )
4645rabsnif 4258 . . . . . . . . . . . . . . 15  |-  { b  e.  { { <. I ,  I >. } }  |  dom  ( b  \  _I  )  e.  Fin }  =  if ( dom  ( { <. I ,  I >. }  \  _I  )  e.  Fin ,  { { <. I ,  I >. } } ,  (/) )
4746a1i 11 . . . . . . . . . . . . . 14  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  { b  e.  { { <. I ,  I >. } }  |  dom  ( b  \  _I  )  e.  Fin }  =  if ( dom  ( { <. I ,  I >. }  \  _I  )  e.  Fin ,  { { <. I ,  I >. } } ,  (/) ) )
48 restidsing 5458 . . . . . . . . . . . . . . . . . . . 20  |-  (  _I  |`  { I } )  =  ( { I }  X.  { I }
)
49 xpsng 6406 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( I  e.  V  /\  I  e.  V )  ->  ( { I }  X.  { I } )  =  { <. I ,  I >. } )
5049anidms 677 . . . . . . . . . . . . . . . . . . . 20  |-  ( I  e.  V  ->  ( { I }  X.  { I } )  =  { <. I ,  I >. } )
5148, 50syl5req 2669 . . . . . . . . . . . . . . . . . . 19  |-  ( I  e.  V  ->  { <. I ,  I >. }  =  (  _I  |`  { I } ) )
52 fnsng 5938 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( I  e.  V  /\  I  e.  V )  ->  { <. I ,  I >. }  Fn  { I } )
5352anidms 677 . . . . . . . . . . . . . . . . . . . 20  |-  ( I  e.  V  ->  { <. I ,  I >. }  Fn  { I } )
54 fnnfpeq0 6444 . . . . . . . . . . . . . . . . . . . 20  |-  ( {
<. I ,  I >. }  Fn  { I }  ->  ( dom  ( {
<. I ,  I >. } 
\  _I  )  =  (/) 
<->  { <. I ,  I >. }  =  (  _I  |`  { I } ) ) )
5553, 54syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( I  e.  V  ->  ( dom  ( { <. I ,  I >. }  \  _I  )  =  (/)  <->  { <. I ,  I >. }  =  (  _I  |`  { I } ) ) )
5651, 55mpbird 247 . . . . . . . . . . . . . . . . . 18  |-  ( I  e.  V  ->  dom  ( { <. I ,  I >. }  \  _I  )  =  (/) )
57 0fin 8188 . . . . . . . . . . . . . . . . . 18  |-  (/)  e.  Fin
5856, 57syl6eqel 2709 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  V  ->  dom  ( { <. I ,  I >. }  \  _I  )  e.  Fin )
5958adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( N  =  { I }  /\  I  e.  V
)  ->  dom  ( {
<. I ,  I >. } 
\  _I  )  e. 
Fin )
60593ad2ant2 1083 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  dom  ( { <. I ,  I >. }  \  _I  )  e.  Fin )
6160iftrued 4094 . . . . . . . . . . . . . 14  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  if ( dom  ( { <. I ,  I >. }  \  _I  )  e.  Fin ,  { { <. I ,  I >. } } ,  (/) )  =  { { <. I ,  I >. } } )
6242, 47, 613eqtrrd 2661 . . . . . . . . . . . . 13  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  { { <. I ,  I >. } }  =  { b  e.  ( Base `  ( SymGrp `
 N ) )  |  dom  ( b 
\  _I  )  e. 
Fin } )
6362fneq2d 5982 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
(pmSgn `  N )  Fn  { { <. I ,  I >. } }  <->  (pmSgn `  N
)  Fn  { b  e.  ( Base `  ( SymGrp `
 N ) )  |  dom  ( b 
\  _I  )  e. 
Fin } ) )
6437, 63mpbiri 248 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (pmSgn `  N )  Fn  { { <. I ,  I >. } } )
6523snid 4208 . . . . . . . . . . 11  |-  { <. I ,  I >. }  e.  { { <. I ,  I >. } }
66 fvco2 6273 . . . . . . . . . . 11  |-  ( ( (pmSgn `  N )  Fn  { { <. I ,  I >. } }  /\  {
<. I ,  I >. }  e.  { { <. I ,  I >. } }
)  ->  ( (
( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  { <. I ,  I >. } )  =  ( ( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. I ,  I >. } ) ) )
6764, 65, 66sylancl 694 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  { <. I ,  I >. } )  =  ( ( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. I ,  I >. } ) ) )
68 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( N  =  { I }  ->  (pmSgn `  N )  =  (pmSgn `  { I } ) )
6968adantr 481 . . . . . . . . . . . . . 14  |-  ( ( N  =  { I }  /\  I  e.  V
)  ->  (pmSgn `  N
)  =  (pmSgn `  { I } ) )
70693ad2ant2 1083 . . . . . . . . . . . . 13  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (pmSgn `  N )  =  (pmSgn `  { I } ) )
7170fveq1d 6193 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
(pmSgn `  N ) `  { <. I ,  I >. } )  =  ( (pmSgn `  { I } ) `  { <. I ,  I >. } ) )
72 snidg 4206 . . . . . . . . . . . . . . . . . 18  |-  ( {
<. I ,  I >. }  e.  _V  ->  { <. I ,  I >. }  e.  { { <. I ,  I >. } } )
7323, 72mp1i 13 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  V  ->  { <. I ,  I >. }  e.  { { <. I ,  I >. } } )
7473, 19eleqtrrd 2704 . . . . . . . . . . . . . . . 16  |-  ( I  e.  V  ->  { <. I ,  I >. }  e.  ( Base `  ( SymGrp `  { I } ) ) )
7574ancli 574 . . . . . . . . . . . . . . 15  |-  ( I  e.  V  ->  (
I  e.  V  /\  {
<. I ,  I >. }  e.  ( Base `  ( SymGrp `
 { I }
) ) ) )
7675adantl 482 . . . . . . . . . . . . . 14  |-  ( ( N  =  { I }  /\  I  e.  V
)  ->  ( I  e.  V  /\  { <. I ,  I >. }  e.  ( Base `  ( SymGrp `  { I } ) ) ) )
77763ad2ant2 1083 . . . . . . . . . . . . 13  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
I  e.  V  /\  {
<. I ,  I >. }  e.  ( Base `  ( SymGrp `
 { I }
) ) ) )
78 eqid 2622 . . . . . . . . . . . . . 14  |-  (pmSgn `  { I } )  =  (pmSgn `  {
I } )
7918, 16, 17, 78psgnsn 17940 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  {
<. I ,  I >. }  e.  ( Base `  ( SymGrp `
 { I }
) ) )  -> 
( (pmSgn `  {
I } ) `  { <. I ,  I >. } )  =  1 )
8077, 79syl 17 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
(pmSgn `  { I } ) `  { <. I ,  I >. } )  =  1 )
8171, 80eqtrd 2656 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
(pmSgn `  N ) `  { <. I ,  I >. } )  =  1 )
8281fveq2d 6195 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
( ZRHom `  R
) `  ( (pmSgn `  N ) `  { <. I ,  I >. } ) )  =  ( ( ZRHom `  R
) `  1 )
)
83 crngring 18558 . . . . . . . . . . . 12  |-  ( R  e.  CRing  ->  R  e.  Ring )
84833ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  R  e.  Ring )
85 eqid 2622 . . . . . . . . . . . 12  |-  ( 1r
`  R )  =  ( 1r `  R
)
865, 85zrh1 19861 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  ( ( ZRHom `  R ) `  1 )  =  ( 1r `  R
) )
8784, 86syl 17 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
( ZRHom `  R
) `  1 )  =  ( 1r `  R ) )
8867, 82, 873eqtrd 2660 . . . . . . . . 9  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  { <. I ,  I >. } )  =  ( 1r `  R ) )
89 simp2l 1087 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  N  =  { I } )
9089mpteq1d 4738 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
x  e.  N  |->  ( ( { <. I ,  I >. } `  x
) M x ) )  =  ( x  e.  { I }  |->  ( ( { <. I ,  I >. } `  x ) M x ) ) )
9190oveq2d 6666 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
(mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x
) M x ) ) )  =  ( (mulGrp `  R )  gsumg  ( x  e.  { I }  |->  ( ( {
<. I ,  I >. } `
 x ) M x ) ) ) )
928ringmgp 18553 . . . . . . . . . . . . 13  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
9383, 92syl 17 . . . . . . . . . . . 12  |-  ( R  e.  CRing  ->  (mulGrp `  R
)  e.  Mnd )
94933ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (mulGrp `  R )  e.  Mnd )
95 snidg 4206 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  V  ->  I  e.  { I } )
9695adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( N  =  { I }  /\  I  e.  V
)  ->  I  e.  { I } )
97 eleq2 2690 . . . . . . . . . . . . . . . . 17  |-  ( N  =  { I }  ->  ( I  e.  N  <->  I  e.  { I }
) )
9897adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( N  =  { I }  /\  I  e.  V
)  ->  ( I  e.  N  <->  I  e.  { I } ) )
9996, 98mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ( N  =  { I }  /\  I  e.  V
)  ->  I  e.  N )
1003eleq2i 2693 . . . . . . . . . . . . . . . 16  |-  ( M  e.  B  <->  M  e.  ( Base `  A )
)
101100biimpi 206 . . . . . . . . . . . . . . 15  |-  ( M  e.  B  ->  M  e.  ( Base `  A
) )
102 simpl 473 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  N  /\  M  e.  ( Base `  A ) )  ->  I  e.  N )
103 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  N  /\  M  e.  ( Base `  A ) )  ->  M  e.  ( Base `  A ) )
104102, 102, 1033jca 1242 . . . . . . . . . . . . . . 15  |-  ( ( I  e.  N  /\  M  e.  ( Base `  A ) )  -> 
( I  e.  N  /\  I  e.  N  /\  M  e.  ( Base `  A ) ) )
10599, 101, 104syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( ( N  =  {
I }  /\  I  e.  V )  /\  M  e.  B )  ->  (
I  e.  N  /\  I  e.  N  /\  M  e.  ( Base `  A ) ) )
1061053adant1 1079 . . . . . . . . . . . . 13  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
I  e.  N  /\  I  e.  N  /\  M  e.  ( Base `  A ) ) )
107 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Base `  R )  =  (
Base `  R )
1082, 107matecl 20231 . . . . . . . . . . . . 13  |-  ( ( I  e.  N  /\  I  e.  N  /\  M  e.  ( Base `  A ) )  -> 
( I M I )  e.  ( Base `  R ) )
109106, 108syl 17 . . . . . . . . . . . 12  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
I M I )  e.  ( Base `  R
) )
1108, 107mgpbas 18495 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  (mulGrp `  R
) )
111109, 110syl6eleq 2711 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
I M I )  e.  ( Base `  (mulGrp `  R ) ) )
112 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
113 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( x  =  I  ->  ( { <. I ,  I >. } `  x )  =  ( { <. I ,  I >. } `  I ) )
114 eqvisset 3211 . . . . . . . . . . . . . . 15  |-  ( x  =  I  ->  I  e.  _V )
115 fvsng 6447 . . . . . . . . . . . . . . 15  |-  ( ( I  e.  _V  /\  I  e.  _V )  ->  ( { <. I ,  I >. } `  I
)  =  I )
116114, 114, 115syl2anc 693 . . . . . . . . . . . . . 14  |-  ( x  =  I  ->  ( { <. I ,  I >. } `  I )  =  I )
117113, 116eqtrd 2656 . . . . . . . . . . . . 13  |-  ( x  =  I  ->  ( { <. I ,  I >. } `  x )  =  I )
118 id 22 . . . . . . . . . . . . 13  |-  ( x  =  I  ->  x  =  I )
119117, 118oveq12d 6668 . . . . . . . . . . . 12  |-  ( x  =  I  ->  (
( { <. I ,  I >. } `  x
) M x )  =  ( I M I ) )
120112, 119gsumsn 18354 . . . . . . . . . . 11  |-  ( ( (mulGrp `  R )  e.  Mnd  /\  I  e.  V  /\  ( I M I )  e.  ( Base `  (mulGrp `  R ) ) )  ->  ( (mulGrp `  R )  gsumg  ( x  e.  {
I }  |->  ( ( { <. I ,  I >. } `  x ) M x ) ) )  =  ( I M I ) )
12194, 15, 111, 120syl3anc 1326 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
(mulGrp `  R )  gsumg  ( x  e.  { I }  |->  ( ( {
<. I ,  I >. } `
 x ) M x ) ) )  =  ( I M I ) )
12291, 121eqtrd 2656 . . . . . . . . 9  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
(mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x
) M x ) ) )  =  ( I M I ) )
12388, 122oveq12d 6668 . . . . . . . 8  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  { <. I ,  I >. } ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x
) M x ) ) ) )  =  ( ( 1r `  R ) ( .r
`  R ) ( I M I ) ) )
124993ad2ant2 1083 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  I  e.  N )
1251013ad2ant3 1084 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  M  e.  ( Base `  A
) )
126124, 124, 125, 108syl3anc 1326 . . . . . . . . 9  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
I M I )  e.  ( Base `  R
) )
127107, 7, 85ringlidm 18571 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
I M I )  e.  ( Base `  R
) )  ->  (
( 1r `  R
) ( .r `  R ) ( I M I ) )  =  ( I M I ) )
12884, 126, 127syl2anc 693 . . . . . . . 8  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) ( I M I ) )  =  ( I M I ) )
129123, 128eqtrd 2656 . . . . . . 7  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  { <. I ,  I >. } ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x
) M x ) ) ) )  =  ( I M I ) )
130129opeq2d 4409 . . . . . 6  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  <. { <. I ,  I >. } , 
( ( ( ( ZRHom `  R )  o.  (pmSgn `  N )
) `  { <. I ,  I >. } ) ( .r `  R ) ( (mulGrp `  R
)  gsumg  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x ) M x ) ) ) )
>.  =  <. { <. I ,  I >. } , 
( I M I ) >. )
131130sneqd 4189 . . . . 5  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  { <. {
<. I ,  I >. } ,  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  { <. I ,  I >. } ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x
) M x ) ) ) ) >. }  =  { <. { <. I ,  I >. } , 
( I M I ) >. } )
132 ovex 6678 . . . . . 6  |-  ( I M I )  e. 
_V
133 eqidd 2623 . . . . . . 7  |-  ( y  =  { <. I ,  I >. }  ->  (
I M I )  =  ( I M I ) )
134133fmptsng 6434 . . . . . 6  |-  ( ( { <. I ,  I >. }  e.  _V  /\  ( I M I )  e.  _V )  ->  { <. { <. I ,  I >. } ,  ( I M I )
>. }  =  ( y  e.  { { <. I ,  I >. } }  |->  ( I M I ) ) )
13524, 132, 134sylancl 694 . . . . 5  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  { <. {
<. I ,  I >. } ,  ( I M I ) >. }  =  ( y  e.  { { <. I ,  I >. } }  |->  ( I M I ) ) )
136131, 135eqtrd 2656 . . . 4  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  { <. {
<. I ,  I >. } ,  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  { <. I ,  I >. } ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( { <. I ,  I >. } `  x
) M x ) ) ) ) >. }  =  ( y  e.  { { <. I ,  I >. } }  |->  ( I M I ) ) )
13722, 34, 1363eqtrd 2660 . . 3  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  (
p  e.  ( Base `  ( SymGrp `  N )
)  |->  ( ( ( ( ZRHom `  R
)  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( p `  x
) M x ) ) ) ) )  =  ( y  e. 
{ { <. I ,  I >. } }  |->  ( I M I ) ) )
138137oveq2d 6666 . 2  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  ( R  gsumg  ( p  e.  (
Base `  ( SymGrp `  N ) )  |->  ( ( ( ( ZRHom `  R )  o.  (pmSgn `  N ) ) `  p ) ( .r
`  R ) ( (mulGrp `  R )  gsumg  ( x  e.  N  |->  ( ( p `  x
) M x ) ) ) ) ) )  =  ( R 
gsumg  ( y  e.  { { <. I ,  I >. } }  |->  ( I M I ) ) ) )
139 ringmnd 18556 . . . . 5  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
14083, 139syl 17 . . . 4  |-  ( R  e.  CRing  ->  R  e.  Mnd )
1411403ad2ant1 1082 . . 3  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  R  e.  Mnd )
142107, 133gsumsn 18354 . . 3  |-  ( ( R  e.  Mnd  /\  {
<. I ,  I >. }  e.  _V  /\  (
I M I )  e.  ( Base `  R
) )  ->  ( R  gsumg  ( y  e.  { { <. I ,  I >. } }  |->  ( I M I ) ) )  =  ( I M I ) )
143141, 24, 126, 142syl3anc 1326 . 2  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  ( R  gsumg  ( y  e.  { { <. I ,  I >. } }  |->  ( I M I ) ) )  =  ( I M I ) )
14410, 138, 1433eqtrd 2660 1  |-  ( ( R  e.  CRing  /\  ( N  =  { I }  /\  I  e.  V
)  /\  M  e.  B )  ->  ( D `  M )  =  ( I M I ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    \ cdif 3571   (/)c0 3915   ifcif 4086   {csn 4177   <.cop 4183    |-> cmpt 4729    _I cid 5023    X. cxp 5112   dom cdm 5114    |` cres 5116    o. ccom 5118    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   Fincfn 7955   1c1 9937   Basecbs 15857   .rcmulr 15942    gsumg cgsu 16101   Mndcmnd 17294   SymGrpcsymg 17797  pmSgncpsgn 17909  mulGrpcmgp 18489   1rcur 18501   Ringcrg 18547   CRingccrg 18548   ZRHomczrh 19848   Mat cmat 20213   maDet cmdat 20390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-symg 17798  df-pmtr 17862  df-psgn 17911  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-rnghom 18715  df-subrg 18778  df-sra 19172  df-rgmod 19173  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-dsmm 20076  df-frlm 20091  df-mat 20214  df-mdet 20391
This theorem is referenced by:  chpmat1d  20641
  Copyright terms: Public domain W3C validator