MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raliunxp Structured version   Visualization version   Unicode version

Theorem raliunxp 5261
Description: Write a double restricted quantification as one universal quantifier. In this version of ralxp 5263, 
B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
ralxp.1  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
raliunxp  |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B )
ph 
<-> 
A. y  e.  A  A. z  e.  B  ps )
Distinct variable groups:    x, y,
z, A    x, B, z    ph, y, z    ps, x
Allowed substitution hints:    ph( x)    ps( y, z)    B( y)

Proof of Theorem raliunxp
StepHypRef Expression
1 eliunxp 5259 . . . . . 6  |-  ( x  e.  U_ y  e.  A  ( { y }  X.  B )  <->  E. y E. z ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
) )
21imbi1i 339 . . . . 5  |-  ( ( x  e.  U_ y  e.  A  ( {
y }  X.  B
)  ->  ph )  <->  ( E. y E. z ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph ) )
3 19.23vv 1903 . . . . 5  |-  ( A. y A. z ( ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
)  ->  ph )  <->  ( E. y E. z ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph ) )
42, 3bitr4i 267 . . . 4  |-  ( ( x  e.  U_ y  e.  A  ( {
y }  X.  B
)  ->  ph )  <->  A. y A. z ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph ) )
54albii 1747 . . 3  |-  ( A. x ( x  e. 
U_ y  e.  A  ( { y }  X.  B )  ->  ph )  <->  A. x A. y A. z ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph ) )
6 alrot3 2038 . . . 4  |-  ( A. x A. y A. z
( ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B
) )  ->  ph )  <->  A. y A. z A. x ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph ) )
7 impexp 462 . . . . . . 7  |-  ( ( ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
)  ->  ph )  <->  ( x  =  <. y ,  z
>.  ->  ( ( y  e.  A  /\  z  e.  B )  ->  ph )
) )
87albii 1747 . . . . . 6  |-  ( A. x ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph )  <->  A. x ( x  =  <. y ,  z
>.  ->  ( ( y  e.  A  /\  z  e.  B )  ->  ph )
) )
9 opex 4932 . . . . . . 7  |-  <. y ,  z >.  e.  _V
10 ralxp.1 . . . . . . . 8  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
1110imbi2d 330 . . . . . . 7  |-  ( x  =  <. y ,  z
>.  ->  ( ( ( y  e.  A  /\  z  e.  B )  ->  ph )  <->  ( (
y  e.  A  /\  z  e.  B )  ->  ps ) ) )
129, 11ceqsalv 3233 . . . . . 6  |-  ( A. x ( x  = 
<. y ,  z >.  ->  ( ( y  e.  A  /\  z  e.  B )  ->  ph )
)  <->  ( ( y  e.  A  /\  z  e.  B )  ->  ps ) )
138, 12bitri 264 . . . . 5  |-  ( A. x ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph )  <->  ( ( y  e.  A  /\  z  e.  B )  ->  ps ) )
14132albii 1748 . . . 4  |-  ( A. y A. z A. x
( ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B
) )  ->  ph )  <->  A. y A. z ( ( y  e.  A  /\  z  e.  B
)  ->  ps )
)
156, 14bitri 264 . . 3  |-  ( A. x A. y A. z
( ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B
) )  ->  ph )  <->  A. y A. z ( ( y  e.  A  /\  z  e.  B
)  ->  ps )
)
165, 15bitri 264 . 2  |-  ( A. x ( x  e. 
U_ y  e.  A  ( { y }  X.  B )  ->  ph )  <->  A. y A. z ( ( y  e.  A  /\  z  e.  B
)  ->  ps )
)
17 df-ral 2917 . 2  |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B )
ph 
<-> 
A. x ( x  e.  U_ y  e.  A  ( { y }  X.  B )  ->  ph ) )
18 r2al 2939 . 2  |-  ( A. y  e.  A  A. z  e.  B  ps  <->  A. y A. z ( ( y  e.  A  /\  z  e.  B
)  ->  ps )
)
1916, 17, 183bitr4i 292 1  |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B )
ph 
<-> 
A. y  e.  A  A. z  e.  B  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   {csn 4177   <.cop 4183   U_ciun 4520    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by:  rexiunxp  5262  ralxp  5263  fmpt2x  7236  ovmptss  7258  filnetlem4  32376
  Copyright terms: Public domain W3C validator