MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reftr Structured version   Visualization version   Unicode version

Theorem reftr 21317
Description: Refinement is transitive. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Assertion
Ref Expression
reftr  |-  ( ( A Ref B  /\  B Ref C )  ->  A Ref C )

Proof of Theorem reftr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  U. B  =  U. B
2 eqid 2622 . . . 4  |-  U. C  =  U. C
31, 2refbas 21313 . . 3  |-  ( B Ref C  ->  U. C  =  U. B )
4 eqid 2622 . . . 4  |-  U. A  =  U. A
54, 1refbas 21313 . . 3  |-  ( A Ref B  ->  U. B  =  U. A )
63, 5sylan9eqr 2678 . 2  |-  ( ( A Ref B  /\  B Ref C )  ->  U. C  =  U. A )
7 refssex 21314 . . . . . 6  |-  ( ( A Ref B  /\  x  e.  A )  ->  E. y  e.  B  x  C_  y )
87ex 450 . . . . 5  |-  ( A Ref B  ->  (
x  e.  A  ->  E. y  e.  B  x  C_  y ) )
98adantr 481 . . . 4  |-  ( ( A Ref B  /\  B Ref C )  -> 
( x  e.  A  ->  E. y  e.  B  x  C_  y ) )
10 refssex 21314 . . . . . . 7  |-  ( ( B Ref C  /\  y  e.  B )  ->  E. z  e.  C  y  C_  z )
1110ad2ant2lr 784 . . . . . 6  |-  ( ( ( A Ref B  /\  B Ref C )  /\  ( y  e.  B  /\  x  C_  y ) )  ->  E. z  e.  C  y  C_  z )
12 sstr2 3610 . . . . . . . 8  |-  ( x 
C_  y  ->  (
y  C_  z  ->  x 
C_  z ) )
1312reximdv 3016 . . . . . . 7  |-  ( x 
C_  y  ->  ( E. z  e.  C  y  C_  z  ->  E. z  e.  C  x  C_  z
) )
1413ad2antll 765 . . . . . 6  |-  ( ( ( A Ref B  /\  B Ref C )  /\  ( y  e.  B  /\  x  C_  y ) )  -> 
( E. z  e.  C  y  C_  z  ->  E. z  e.  C  x  C_  z ) )
1511, 14mpd 15 . . . . 5  |-  ( ( ( A Ref B  /\  B Ref C )  /\  ( y  e.  B  /\  x  C_  y ) )  ->  E. z  e.  C  x  C_  z )
1615rexlimdvaa 3032 . . . 4  |-  ( ( A Ref B  /\  B Ref C )  -> 
( E. y  e.  B  x  C_  y  ->  E. z  e.  C  x  C_  z ) )
179, 16syld 47 . . 3  |-  ( ( A Ref B  /\  B Ref C )  -> 
( x  e.  A  ->  E. z  e.  C  x  C_  z ) )
1817ralrimiv 2965 . 2  |-  ( ( A Ref B  /\  B Ref C )  ->  A. x  e.  A  E. z  e.  C  x  C_  z )
19 refrel 21311 . . . . 5  |-  Rel  Ref
2019brrelexi 5158 . . . 4  |-  ( A Ref B  ->  A  e.  _V )
2120adantr 481 . . 3  |-  ( ( A Ref B  /\  B Ref C )  ->  A  e.  _V )
224, 2isref 21312 . . 3  |-  ( A  e.  _V  ->  ( A Ref C  <->  ( U. C  =  U. A  /\  A. x  e.  A  E. z  e.  C  x  C_  z ) ) )
2321, 22syl 17 . 2  |-  ( ( A Ref B  /\  B Ref C )  -> 
( A Ref C  <->  ( U. C  =  U. A  /\  A. x  e.  A  E. z  e.  C  x  C_  z
) ) )
246, 18, 23mpbir2and 957 1  |-  ( ( A Ref B  /\  B Ref C )  ->  A Ref C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   U.cuni 4436   class class class wbr 4653   Refcref 21305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-ref 21308
This theorem is referenced by:  refssfne  32353
  Copyright terms: Public domain W3C validator