| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsrdir | Structured version Visualization version Unicode version | ||
| Description: A totally ordered set is a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| Ref | Expression |
|---|---|
| tsrdir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsrps 17221 |
. . . 4
| |
| 2 | psrel 17203 |
. . . 4
| |
| 3 | 1, 2 | syl 17 |
. . 3
|
| 4 | psref2 17204 |
. . . . 5
| |
| 5 | inss1 3833 |
. . . . 5
| |
| 6 | 4, 5 | syl6eqssr 3656 |
. . . 4
|
| 7 | 1, 6 | syl 17 |
. . 3
|
| 8 | 3, 7 | jca 554 |
. 2
|
| 9 | pstr2 17205 |
. . . 4
| |
| 10 | 1, 9 | syl 17 |
. . 3
|
| 11 | psdmrn 17207 |
. . . . . . 7
| |
| 12 | 1, 11 | syl 17 |
. . . . . 6
|
| 13 | 12 | simpld 475 |
. . . . 5
|
| 14 | 13 | sqxpeqd 5141 |
. . . 4
|
| 15 | eqid 2622 |
. . . . . . 7
| |
| 16 | 15 | istsr 17217 |
. . . . . 6
|
| 17 | 16 | simprbi 480 |
. . . . 5
|
| 18 | relcoi2 5663 |
. . . . . . . 8
| |
| 19 | 3, 18 | syl 17 |
. . . . . . 7
|
| 20 | cnvresid 5968 |
. . . . . . . . 9
| |
| 21 | cnvss 5294 |
. . . . . . . . . 10
| |
| 22 | 7, 21 | syl 17 |
. . . . . . . . 9
|
| 23 | 20, 22 | syl5eqssr 3650 |
. . . . . . . 8
|
| 24 | coss1 5277 |
. . . . . . . 8
| |
| 25 | 23, 24 | syl 17 |
. . . . . . 7
|
| 26 | 19, 25 | eqsstr3d 3640 |
. . . . . 6
|
| 27 | relcnv 5503 |
. . . . . . . 8
| |
| 28 | relcoi1 5664 |
. . . . . . . 8
| |
| 29 | 27, 28 | ax-mp 5 |
. . . . . . 7
|
| 30 | relcnvfld 5666 |
. . . . . . . . . . 11
| |
| 31 | 3, 30 | syl 17 |
. . . . . . . . . 10
|
| 32 | 31 | reseq2d 5396 |
. . . . . . . . 9
|
| 33 | 32, 7 | eqsstr3d 3640 |
. . . . . . . 8
|
| 34 | coss2 5278 |
. . . . . . . 8
| |
| 35 | 33, 34 | syl 17 |
. . . . . . 7
|
| 36 | 29, 35 | syl5eqssr 3650 |
. . . . . 6
|
| 37 | 26, 36 | unssd 3789 |
. . . . 5
|
| 38 | 17, 37 | sstrd 3613 |
. . . 4
|
| 39 | 14, 38 | eqsstr3d 3640 |
. . 3
|
| 40 | 10, 39 | jca 554 |
. 2
|
| 41 | eqid 2622 |
. . 3
| |
| 42 | 41 | isdir 17232 |
. 2
|
| 43 | 8, 40, 42 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-fun 5890 df-ps 17200 df-tsr 17201 df-dir 17230 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |