MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resf2nd Structured version   Visualization version   Unicode version

Theorem resf2nd 16555
Description: Value of the functor restriction operator on morphisms. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resf1st.f  |-  ( ph  ->  F  e.  V )
resf1st.h  |-  ( ph  ->  H  e.  W )
resf1st.s  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
resf2nd.x  |-  ( ph  ->  X  e.  S )
resf2nd.y  |-  ( ph  ->  Y  e.  S )
Assertion
Ref Expression
resf2nd  |-  ( ph  ->  ( X ( 2nd `  ( F  |`f  H ) ) Y )  =  ( ( X ( 2nd `  F
) Y )  |`  ( X H Y ) ) )

Proof of Theorem resf2nd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ov 6653 . 2  |-  ( X ( 2nd `  ( F  |`f  H ) ) Y )  =  ( ( 2nd `  ( F  |`f  H ) ) `  <. X ,  Y >. )
2 resf1st.f . . . . . 6  |-  ( ph  ->  F  e.  V )
3 resf1st.h . . . . . 6  |-  ( ph  ->  H  e.  W )
42, 3resfval 16552 . . . . 5  |-  ( ph  ->  ( F  |`f  H )  =  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
)
54fveq2d 6195 . . . 4  |-  ( ph  ->  ( 2nd `  ( F  |`f  H ) )  =  ( 2nd `  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
) )
6 fvex 6201 . . . . . 6  |-  ( 1st `  F )  e.  _V
76resex 5443 . . . . 5  |-  ( ( 1st `  F )  |`  dom  dom  H )  e.  _V
8 dmexg 7097 . . . . . 6  |-  ( H  e.  W  ->  dom  H  e.  _V )
9 mptexg 6484 . . . . . 6  |-  ( dom 
H  e.  _V  ->  ( z  e.  dom  H  |->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) )  e.  _V )
103, 8, 93syl 18 . . . . 5  |-  ( ph  ->  ( z  e.  dom  H 
|->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) )  e.  _V )
11 op2ndg 7181 . . . . 5  |-  ( ( ( ( 1st `  F
)  |`  dom  dom  H
)  e.  _V  /\  ( z  e.  dom  H 
|->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) )  e.  _V )  -> 
( 2nd `  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
)  =  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) )
127, 10, 11sylancr 695 . . . 4  |-  ( ph  ->  ( 2nd `  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
)  =  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) )
135, 12eqtrd 2656 . . 3  |-  ( ph  ->  ( 2nd `  ( F  |`f  H ) )  =  ( z  e.  dom  H 
|->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) ) )
14 simpr 477 . . . . . 6  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  z  =  <. X ,  Y >. )
1514fveq2d 6195 . . . . 5  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  ( ( 2nd `  F ) `  z
)  =  ( ( 2nd `  F ) `
 <. X ,  Y >. ) )
16 df-ov 6653 . . . . 5  |-  ( X ( 2nd `  F
) Y )  =  ( ( 2nd `  F
) `  <. X ,  Y >. )
1715, 16syl6eqr 2674 . . . 4  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  ( ( 2nd `  F ) `  z
)  =  ( X ( 2nd `  F
) Y ) )
1814fveq2d 6195 . . . . 5  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  ( H `  z )  =  ( H `  <. X ,  Y >. ) )
19 df-ov 6653 . . . . 5  |-  ( X H Y )  =  ( H `  <. X ,  Y >. )
2018, 19syl6eqr 2674 . . . 4  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  ( H `  z )  =  ( X H Y ) )
2117, 20reseq12d 5397 . . 3  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  ( ( ( 2nd `  F ) `
 z )  |`  ( H `  z ) )  =  ( ( X ( 2nd `  F
) Y )  |`  ( X H Y ) ) )
22 resf2nd.x . . . . 5  |-  ( ph  ->  X  e.  S )
23 resf2nd.y . . . . 5  |-  ( ph  ->  Y  e.  S )
24 opelxpi 5148 . . . . 5  |-  ( ( X  e.  S  /\  Y  e.  S )  -> 
<. X ,  Y >.  e.  ( S  X.  S
) )
2522, 23, 24syl2anc 693 . . . 4  |-  ( ph  -> 
<. X ,  Y >.  e.  ( S  X.  S
) )
26 resf1st.s . . . . 5  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
27 fndm 5990 . . . . 5  |-  ( H  Fn  ( S  X.  S )  ->  dom  H  =  ( S  X.  S ) )
2826, 27syl 17 . . . 4  |-  ( ph  ->  dom  H  =  ( S  X.  S ) )
2925, 28eleqtrrd 2704 . . 3  |-  ( ph  -> 
<. X ,  Y >.  e. 
dom  H )
30 ovex 6678 . . . . 5  |-  ( X ( 2nd `  F
) Y )  e. 
_V
3130resex 5443 . . . 4  |-  ( ( X ( 2nd `  F
) Y )  |`  ( X H Y ) )  e.  _V
3231a1i 11 . . 3  |-  ( ph  ->  ( ( X ( 2nd `  F ) Y )  |`  ( X H Y ) )  e.  _V )
3313, 21, 29, 32fvmptd 6288 . 2  |-  ( ph  ->  ( ( 2nd `  ( F  |`f  H ) ) `  <. X ,  Y >. )  =  ( ( X ( 2nd `  F
) Y )  |`  ( X H Y ) ) )
341, 33syl5eq 2668 1  |-  ( ph  ->  ( X ( 2nd `  ( F  |`f  H ) ) Y )  =  ( ( X ( 2nd `  F
) Y )  |`  ( X H Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    |-> cmpt 4729    X. cxp 5112   dom cdm 5114    |` cres 5116    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    |`f cresf 16517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-2nd 7169  df-resf 16521
This theorem is referenced by:  funcres  16556
  Copyright terms: Public domain W3C validator