MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres Structured version   Visualization version   Unicode version

Theorem funcres 16556
Description: A functor restricted to a subcategory is a functor. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
funcres.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
funcres.h  |-  ( ph  ->  H  e.  (Subcat `  C ) )
Assertion
Ref Expression
funcres  |-  ( ph  ->  ( F  |`f  H )  e.  ( ( C  |`cat  H )  Func  D ) )

Proof of Theorem funcres
Dummy variables  f 
g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcres.f . . . 4  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
2 funcres.h . . . 4  |-  ( ph  ->  H  e.  (Subcat `  C ) )
31, 2resfval 16552 . . 3  |-  ( ph  ->  ( F  |`f  H )  =  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
)
43fveq2d 6195 . . . . 5  |-  ( ph  ->  ( 2nd `  ( F  |`f  H ) )  =  ( 2nd `  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
) )
5 fvex 6201 . . . . . . 7  |-  ( 1st `  F )  e.  _V
65resex 5443 . . . . . 6  |-  ( ( 1st `  F )  |`  dom  dom  H )  e.  _V
7 dmexg 7097 . . . . . . 7  |-  ( H  e.  (Subcat `  C
)  ->  dom  H  e. 
_V )
8 mptexg 6484 . . . . . . 7  |-  ( dom 
H  e.  _V  ->  ( z  e.  dom  H  |->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) )  e.  _V )
92, 7, 83syl 18 . . . . . 6  |-  ( ph  ->  ( z  e.  dom  H 
|->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) )  e.  _V )
10 op2ndg 7181 . . . . . 6  |-  ( ( ( ( 1st `  F
)  |`  dom  dom  H
)  e.  _V  /\  ( z  e.  dom  H 
|->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) )  e.  _V )  -> 
( 2nd `  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
)  =  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) )
116, 9, 10sylancr 695 . . . . 5  |-  ( ph  ->  ( 2nd `  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
)  =  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) )
124, 11eqtrd 2656 . . . 4  |-  ( ph  ->  ( 2nd `  ( F  |`f  H ) )  =  ( z  e.  dom  H 
|->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) ) )
1312opeq2d 4409 . . 3  |-  ( ph  -> 
<. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( 2nd `  ( F  |`f  H ) ) >.  =  <. ( ( 1st `  F )  |`  dom  dom  H ) ,  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) ) >.
)
143, 13eqtr4d 2659 . 2  |-  ( ph  ->  ( F  |`f  H )  =  <. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( 2nd `  ( F  |`f  H ) ) >.
)
15 eqid 2622 . . . 4  |-  ( Base `  ( C  |`cat  H )
)  =  ( Base `  ( C  |`cat  H )
)
16 eqid 2622 . . . 4  |-  ( Base `  D )  =  (
Base `  D )
17 eqid 2622 . . . 4  |-  ( Hom  `  ( C  |`cat  H )
)  =  ( Hom  `  ( C  |`cat  H )
)
18 eqid 2622 . . . 4  |-  ( Hom  `  D )  =  ( Hom  `  D )
19 eqid 2622 . . . 4  |-  ( Id
`  ( C  |`cat  H
) )  =  ( Id `  ( C  |`cat 
H ) )
20 eqid 2622 . . . 4  |-  ( Id
`  D )  =  ( Id `  D
)
21 eqid 2622 . . . 4  |-  (comp `  ( C  |`cat  H ) )  =  (comp `  ( C  |`cat  H ) )
22 eqid 2622 . . . 4  |-  (comp `  D )  =  (comp `  D )
23 eqid 2622 . . . . 5  |-  ( C  |`cat 
H )  =  ( C  |`cat  H )
2423, 2subccat 16508 . . . 4  |-  ( ph  ->  ( C  |`cat  H )  e.  Cat )
25 funcrcl 16523 . . . . . 6  |-  ( F  e.  ( C  Func  D )  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
261, 25syl 17 . . . . 5  |-  ( ph  ->  ( C  e.  Cat  /\  D  e.  Cat )
)
2726simprd 479 . . . 4  |-  ( ph  ->  D  e.  Cat )
28 eqid 2622 . . . . . . 7  |-  ( Base `  C )  =  (
Base `  C )
29 relfunc 16522 . . . . . . . 8  |-  Rel  ( C  Func  D )
30 1st2ndbr 7217 . . . . . . . 8  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
3129, 1, 30sylancr 695 . . . . . . 7  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
3228, 16, 31funcf1 16526 . . . . . 6  |-  ( ph  ->  ( 1st `  F
) : ( Base `  C ) --> ( Base `  D ) )
33 eqidd 2623 . . . . . . . 8  |-  ( ph  ->  dom  dom  H  =  dom  dom  H )
342, 33subcfn 16501 . . . . . . 7  |-  ( ph  ->  H  Fn  ( dom 
dom  H  X.  dom  dom  H ) )
352, 34, 28subcss1 16502 . . . . . 6  |-  ( ph  ->  dom  dom  H  C_  ( Base `  C ) )
3632, 35fssresd 6071 . . . . 5  |-  ( ph  ->  ( ( 1st `  F
)  |`  dom  dom  H
) : dom  dom  H --> ( Base `  D
) )
3726simpld 475 . . . . . . 7  |-  ( ph  ->  C  e.  Cat )
3823, 28, 37, 34, 35rescbas 16489 . . . . . 6  |-  ( ph  ->  dom  dom  H  =  ( Base `  ( C  |`cat  H ) ) )
3938feq2d 6031 . . . . 5  |-  ( ph  ->  ( ( ( 1st `  F )  |`  dom  dom  H ) : dom  dom  H --> ( Base `  D
)  <->  ( ( 1st `  F )  |`  dom  dom  H ) : ( Base `  ( C  |`cat  H )
) --> ( Base `  D
) ) )
4036, 39mpbid 222 . . . 4  |-  ( ph  ->  ( ( 1st `  F
)  |`  dom  dom  H
) : ( Base `  ( C  |`cat  H )
) --> ( Base `  D
) )
41 fvex 6201 . . . . . . 7  |-  ( ( 2nd `  F ) `
 z )  e. 
_V
4241resex 5443 . . . . . 6  |-  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) )  e.  _V
43 eqid 2622 . . . . . 6  |-  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) )  =  ( z  e.  dom  H 
|->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) )
4442, 43fnmpti 6022 . . . . 5  |-  ( z  e.  dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) )  Fn 
dom  H
4512eqcomd 2628 . . . . . 6  |-  ( ph  ->  ( z  e.  dom  H 
|->  ( ( ( 2nd `  F ) `  z
)  |`  ( H `  z ) ) )  =  ( 2nd `  ( F  |`f  H ) ) )
46 fndm 5990 . . . . . . . 8  |-  ( H  Fn  ( dom  dom  H  X.  dom  dom  H
)  ->  dom  H  =  ( dom  dom  H  X.  dom  dom  H )
)
4734, 46syl 17 . . . . . . 7  |-  ( ph  ->  dom  H  =  ( dom  dom  H  X.  dom  dom  H ) )
4838sqxpeqd 5141 . . . . . . 7  |-  ( ph  ->  ( dom  dom  H  X.  dom  dom  H )  =  ( ( Base `  ( C  |`cat  H )
)  X.  ( Base `  ( C  |`cat  H )
) ) )
4947, 48eqtrd 2656 . . . . . 6  |-  ( ph  ->  dom  H  =  ( ( Base `  ( C  |`cat  H ) )  X.  ( Base `  ( C  |`cat  H ) ) ) )
5045, 49fneq12d 5983 . . . . 5  |-  ( ph  ->  ( ( z  e. 
dom  H  |->  ( ( ( 2nd `  F
) `  z )  |`  ( H `  z
) ) )  Fn 
dom  H  <->  ( 2nd `  ( F  |`f  H ) )  Fn  ( ( Base `  ( C  |`cat  H ) )  X.  ( Base `  ( C  |`cat  H ) ) ) ) )
5144, 50mpbii 223 . . . 4  |-  ( ph  ->  ( 2nd `  ( F  |`f  H ) )  Fn  ( ( Base `  ( C  |`cat  H ) )  X.  ( Base `  ( C  |`cat  H ) ) ) )
52 eqid 2622 . . . . . . . 8  |-  ( Hom  `  C )  =  ( Hom  `  C )
5331adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
5435adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  ->  dom  dom  H  C_  ( Base `  C ) )
55 simprl 794 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  ->  x  e.  ( Base `  ( C  |`cat  H )
) )
5638adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  ->  dom  dom  H  =  (
Base `  ( C  |`cat  H ) ) )
5755, 56eleqtrrd 2704 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  ->  x  e.  dom  dom  H
)
5854, 57sseldd 3604 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  ->  x  e.  ( Base `  C ) )
59 simprr 796 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
y  e.  ( Base `  ( C  |`cat  H )
) )
6059, 56eleqtrrd 2704 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
y  e.  dom  dom  H )
6154, 60sseldd 3604 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
y  e.  ( Base `  C ) )
6228, 52, 18, 53, 58, 61funcf2 16528 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
( x ( 2nd `  F ) y ) : ( x ( Hom  `  C )
y ) --> ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
632adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  ->  H  e.  (Subcat `  C
) )
6434adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  ->  H  Fn  ( dom  dom 
H  X.  dom  dom  H ) )
6563, 64, 52, 57, 60subcss2 16503 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
( x H y )  C_  ( x
( Hom  `  C ) y ) )
6662, 65fssresd 6071 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
( ( x ( 2nd `  F ) y )  |`  (
x H y ) ) : ( x H y ) --> ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
671adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  ->  F  e.  ( C  Func  D ) )
6867, 63, 64, 57, 60resf2nd 16555 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
( x ( 2nd `  ( F  |`f  H ) ) y )  =  ( ( x ( 2nd `  F
) y )  |`  ( x H y ) ) )
6968feq1d 6030 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
( ( x ( 2nd `  ( F  |`f  H ) ) y ) : ( x H y ) --> ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
)  <->  ( ( x ( 2nd `  F
) y )  |`  ( x H y ) ) : ( x H y ) --> ( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  y
) ) ) )
7066, 69mpbird 247 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
( x ( 2nd `  ( F  |`f  H ) ) y ) : ( x H y ) --> ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
7123, 28, 37, 34, 35reschom 16490 . . . . . . . 8  |-  ( ph  ->  H  =  ( Hom  `  ( C  |`cat  H )
) )
7271adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  ->  H  =  ( Hom  `  ( C  |`cat  H )
) )
7372oveqd 6667 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
( x H y )  =  ( x ( Hom  `  ( C  |`cat  H ) ) y ) )
74 fvres 6207 . . . . . . . . 9  |-  ( x  e.  dom  dom  H  ->  ( ( ( 1st `  F )  |`  dom  dom  H ) `  x )  =  ( ( 1st `  F ) `  x
) )
7557, 74syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
( ( ( 1st `  F )  |`  dom  dom  H ) `  x )  =  ( ( 1st `  F ) `  x
) )
76 fvres 6207 . . . . . . . . 9  |-  ( y  e.  dom  dom  H  ->  ( ( ( 1st `  F )  |`  dom  dom  H ) `  y )  =  ( ( 1st `  F ) `  y
) )
7760, 76syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
( ( ( 1st `  F )  |`  dom  dom  H ) `  y )  =  ( ( 1st `  F ) `  y
) )
7875, 77oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
( ( ( ( 1st `  F )  |`  dom  dom  H ) `  x ) ( Hom  `  D ) ( ( ( 1st `  F
)  |`  dom  dom  H
) `  y )
)  =  ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
7978eqcomd 2628 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  y
) )  =  ( ( ( ( 1st `  F )  |`  dom  dom  H ) `  x ) ( Hom  `  D
) ( ( ( 1st `  F )  |`  dom  dom  H ) `  y ) ) )
8073, 79feq23d 6040 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
( ( x ( 2nd `  ( F  |`f  H ) ) y ) : ( x H y ) --> ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
)  <->  ( x ( 2nd `  ( F  |`f  H ) ) y ) : ( x ( Hom  `  ( C  |`cat  H ) ) y ) --> ( ( ( ( 1st `  F
)  |`  dom  dom  H
) `  x )
( Hom  `  D ) ( ( ( 1st `  F )  |`  dom  dom  H ) `  y ) ) ) )
8170, 80mpbid 222 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
) ) )  -> 
( x ( 2nd `  ( F  |`f  H ) ) y ) : ( x ( Hom  `  ( C  |`cat  H ) ) y ) --> ( ( ( ( 1st `  F
)  |`  dom  dom  H
) `  x )
( Hom  `  D ) ( ( ( 1st `  F )  |`  dom  dom  H ) `  y ) ) )
821adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  ->  F  e.  ( C  Func  D ) )
832adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  ->  H  e.  (Subcat `  C
) )
8434adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  ->  H  Fn  ( dom  dom 
H  X.  dom  dom  H ) )
8538eleq2d 2687 . . . . . . . 8  |-  ( ph  ->  ( x  e.  dom  dom 
H  <->  x  e.  ( Base `  ( C  |`cat  H
) ) ) )
8685biimpar 502 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  ->  x  e.  dom  dom  H
)
8782, 83, 84, 86, 86resf2nd 16555 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  -> 
( x ( 2nd `  ( F  |`f  H ) ) x )  =  ( ( x ( 2nd `  F
) x )  |`  ( x H x ) ) )
88 eqid 2622 . . . . . . . 8  |-  ( Id
`  C )  =  ( Id `  C
)
8923, 83, 84, 88, 86subcid 16507 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  -> 
( ( Id `  C ) `  x
)  =  ( ( Id `  ( C  |`cat 
H ) ) `  x ) )
9089eqcomd 2628 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  -> 
( ( Id `  ( C  |`cat  H ) ) `  x )  =  ( ( Id `  C
) `  x )
)
9187, 90fveq12d 6197 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  -> 
( ( x ( 2nd `  ( F  |`f  H ) ) x ) `  ( ( Id `  ( C  |`cat 
H ) ) `  x ) )  =  ( ( ( x ( 2nd `  F
) x )  |`  ( x H x ) ) `  (
( Id `  C
) `  x )
) )
9231adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  -> 
( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
9338, 35eqsstr3d 3640 . . . . . . . 8  |-  ( ph  ->  ( Base `  ( C  |`cat  H ) )  C_  ( Base `  C )
)
9493sselda 3603 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  ->  x  e.  ( Base `  C ) )
9528, 88, 20, 92, 94funcid 16530 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  -> 
( ( x ( 2nd `  F ) x ) `  (
( Id `  C
) `  x )
)  =  ( ( Id `  D ) `
 ( ( 1st `  F ) `  x
) ) )
9683, 84, 86, 88subcidcl 16504 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  -> 
( ( Id `  C ) `  x
)  e.  ( x H x ) )
97 fvres 6207 . . . . . . 7  |-  ( ( ( Id `  C
) `  x )  e.  ( x H x )  ->  ( (
( x ( 2nd `  F ) x )  |`  ( x H x ) ) `  (
( Id `  C
) `  x )
)  =  ( ( x ( 2nd `  F
) x ) `  ( ( Id `  C ) `  x
) ) )
9896, 97syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  -> 
( ( ( x ( 2nd `  F
) x )  |`  ( x H x ) ) `  (
( Id `  C
) `  x )
)  =  ( ( x ( 2nd `  F
) x ) `  ( ( Id `  C ) `  x
) ) )
9986, 74syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  -> 
( ( ( 1st `  F )  |`  dom  dom  H ) `  x )  =  ( ( 1st `  F ) `  x
) )
10099fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  -> 
( ( Id `  D ) `  (
( ( 1st `  F
)  |`  dom  dom  H
) `  x )
)  =  ( ( Id `  D ) `
 ( ( 1st `  F ) `  x
) ) )
10195, 98, 1003eqtr4d 2666 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  -> 
( ( ( x ( 2nd `  F
) x )  |`  ( x H x ) ) `  (
( Id `  C
) `  x )
)  =  ( ( Id `  D ) `
 ( ( ( 1st `  F )  |`  dom  dom  H ) `  x ) ) )
10291, 101eqtrd 2656 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  ( C  |`cat  H ) ) )  -> 
( ( x ( 2nd `  ( F  |`f  H ) ) x ) `  ( ( Id `  ( C  |`cat 
H ) ) `  x ) )  =  ( ( Id `  D ) `  (
( ( 1st `  F
)  |`  dom  dom  H
) `  x )
) )
10323ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  H  e.  (Subcat `  C ) )
104343ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  H  Fn  ( dom  dom  H  X.  dom  dom  H ) )
105 simp21 1094 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  x  e.  ( Base `  ( C  |`cat  H ) ) )
106383ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  dom  dom  H  =  ( Base `  ( C  |`cat  H ) ) )
107105, 106eleqtrrd 2704 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  x  e.  dom  dom  H )
108 eqid 2622 . . . . . . . 8  |-  (comp `  C )  =  (comp `  C )
109 simp22 1095 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  y  e.  ( Base `  ( C  |`cat  H ) ) )
110109, 106eleqtrrd 2704 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  y  e.  dom  dom  H )
111 simp23 1096 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  z  e.  ( Base `  ( C  |`cat  H ) ) )
112111, 106eleqtrrd 2704 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  z  e.  dom  dom  H )
113 simp3l 1089 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  f  e.  ( x ( Hom  `  ( C  |`cat  H )
) y ) )
114713ad2ant1 1082 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  H  =  ( Hom  `  ( C  |`cat  H ) ) )
115114oveqd 6667 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( x H y )  =  ( x ( Hom  `  ( C  |`cat  H )
) y ) )
116113, 115eleqtrrd 2704 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  f  e.  ( x H y ) )
117 simp3r 1090 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) )
118114oveqd 6667 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( y H z )  =  ( y ( Hom  `  ( C  |`cat  H )
) z ) )
119117, 118eleqtrrd 2704 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  g  e.  ( y H z ) )
120103, 104, 107, 108, 110, 112, 116, 119subccocl 16505 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( g
( <. x ,  y
>. (comp `  C )
z ) f )  e.  ( x H z ) )
121 fvres 6207 . . . . . . 7  |-  ( ( g ( <. x ,  y >. (comp `  C ) z ) f )  e.  ( x H z )  ->  ( ( ( x ( 2nd `  F
) z )  |`  ( x H z ) ) `  (
g ( <. x ,  y >. (comp `  C ) z ) f ) )  =  ( ( x ( 2nd `  F ) z ) `  (
g ( <. x ,  y >. (comp `  C ) z ) f ) ) )
122120, 121syl 17 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( (
( x ( 2nd `  F ) z )  |`  ( x H z ) ) `  (
g ( <. x ,  y >. (comp `  C ) z ) f ) )  =  ( ( x ( 2nd `  F ) z ) `  (
g ( <. x ,  y >. (comp `  C ) z ) f ) ) )
123313ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( 1st `  F ) ( C 
Func  D ) ( 2nd `  F ) )
124353ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  dom  dom  H  C_  ( Base `  C
) )
125124, 107sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  x  e.  ( Base `  C )
)
126124, 110sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  y  e.  ( Base `  C )
)
127124, 112sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  z  e.  ( Base `  C )
)
128103, 104, 52, 107, 110subcss2 16503 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( x H y )  C_  ( x ( Hom  `  C ) y ) )
129128, 116sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  f  e.  ( x ( Hom  `  C ) y ) )
130103, 104, 52, 110, 112subcss2 16503 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( y H z )  C_  ( y ( Hom  `  C ) z ) )
131130, 119sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  g  e.  ( y ( Hom  `  C ) z ) )
13228, 52, 108, 22, 123, 125, 126, 127, 129, 131funcco 16531 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( (
x ( 2nd `  F
) z ) `  ( g ( <.
x ,  y >.
(comp `  C )
z ) f ) )  =  ( ( ( y ( 2nd `  F ) z ) `
 g ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x ( 2nd `  F
) y ) `  f ) ) )
133122, 132eqtrd 2656 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( (
( x ( 2nd `  F ) z )  |`  ( x H z ) ) `  (
g ( <. x ,  y >. (comp `  C ) z ) f ) )  =  ( ( ( y ( 2nd `  F
) z ) `  g ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x ( 2nd `  F
) y ) `  f ) ) )
13413ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  F  e.  ( C  Func  D ) )
135134, 103, 104, 107, 112resf2nd 16555 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( x
( 2nd `  ( F  |`f  H ) ) z )  =  ( ( x ( 2nd `  F
) z )  |`  ( x H z ) ) )
13623, 28, 37, 34, 35, 108rescco 16492 . . . . . . . . . 10  |-  ( ph  ->  (comp `  C )  =  (comp `  ( C  |`cat  H ) ) )
1371363ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  (comp `  C
)  =  (comp `  ( C  |`cat  H ) ) )
138137eqcomd 2628 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  (comp `  ( C  |`cat  H ) )  =  (comp `  C )
)
139138oveqd 6667 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( <. x ,  y >. (comp `  ( C  |`cat  H )
) z )  =  ( <. x ,  y
>. (comp `  C )
z ) )
140139oveqd 6667 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( g
( <. x ,  y
>. (comp `  ( C  |`cat  H ) ) z ) f )  =  ( g ( <. x ,  y >. (comp `  C ) z ) f ) )
141135, 140fveq12d 6197 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( (
x ( 2nd `  ( F  |`f  H ) ) z ) `  ( g ( <. x ,  y
>. (comp `  ( C  |`cat  H ) ) z ) f ) )  =  ( ( ( x ( 2nd `  F
) z )  |`  ( x H z ) ) `  (
g ( <. x ,  y >. (comp `  C ) z ) f ) ) )
142107, 74syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( (
( 1st `  F
)  |`  dom  dom  H
) `  x )  =  ( ( 1st `  F ) `  x
) )
143110, 76syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( (
( 1st `  F
)  |`  dom  dom  H
) `  y )  =  ( ( 1st `  F ) `  y
) )
144142, 143opeq12d 4410 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  <. ( ( ( 1st `  F
)  |`  dom  dom  H
) `  x ) ,  ( ( ( 1st `  F )  |`  dom  dom  H ) `  y ) >.  =  <. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. )
145 fvres 6207 . . . . . . . 8  |-  ( z  e.  dom  dom  H  ->  ( ( ( 1st `  F )  |`  dom  dom  H ) `  z )  =  ( ( 1st `  F ) `  z
) )
146112, 145syl 17 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( (
( 1st `  F
)  |`  dom  dom  H
) `  z )  =  ( ( 1st `  F ) `  z
) )
147144, 146oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( <. ( ( ( 1st `  F
)  |`  dom  dom  H
) `  x ) ,  ( ( ( 1st `  F )  |`  dom  dom  H ) `  y ) >. (comp `  D ) ( ( ( 1st `  F
)  |`  dom  dom  H
) `  z )
)  =  ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) )
148134, 103, 104, 110, 112resf2nd 16555 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( y
( 2nd `  ( F  |`f  H ) ) z )  =  ( ( y ( 2nd `  F
) z )  |`  ( y H z ) ) )
149148fveq1d 6193 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( (
y ( 2nd `  ( F  |`f  H ) ) z ) `  g )  =  ( ( ( y ( 2nd `  F
) z )  |`  ( y H z ) ) `  g
) )
150 fvres 6207 . . . . . . . 8  |-  ( g  e.  ( y H z )  ->  (
( ( y ( 2nd `  F ) z )  |`  (
y H z ) ) `  g )  =  ( ( y ( 2nd `  F
) z ) `  g ) )
151119, 150syl 17 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( (
( y ( 2nd `  F ) z )  |`  ( y H z ) ) `  g
)  =  ( ( y ( 2nd `  F
) z ) `  g ) )
152149, 151eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( (
y ( 2nd `  ( F  |`f  H ) ) z ) `  g )  =  ( ( y ( 2nd `  F
) z ) `  g ) )
153134, 103, 104, 107, 110resf2nd 16555 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( x
( 2nd `  ( F  |`f  H ) ) y )  =  ( ( x ( 2nd `  F
) y )  |`  ( x H y ) ) )
154153fveq1d 6193 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( (
x ( 2nd `  ( F  |`f  H ) ) y ) `  f )  =  ( ( ( x ( 2nd `  F
) y )  |`  ( x H y ) ) `  f
) )
155 fvres 6207 . . . . . . . 8  |-  ( f  e.  ( x H y )  ->  (
( ( x ( 2nd `  F ) y )  |`  (
x H y ) ) `  f )  =  ( ( x ( 2nd `  F
) y ) `  f ) )
156116, 155syl 17 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( (
( x ( 2nd `  F ) y )  |`  ( x H y ) ) `  f
)  =  ( ( x ( 2nd `  F
) y ) `  f ) )
157154, 156eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( (
x ( 2nd `  ( F  |`f  H ) ) y ) `  f )  =  ( ( x ( 2nd `  F
) y ) `  f ) )
158147, 152, 157oveq123d 6671 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( (
( y ( 2nd `  ( F  |`f  H ) ) z ) `  g ) ( <. ( ( ( 1st `  F )  |`  dom  dom  H ) `  x ) ,  ( ( ( 1st `  F
)  |`  dom  dom  H
) `  y ) >. (comp `  D )
( ( ( 1st `  F )  |`  dom  dom  H ) `  z ) ) ( ( x ( 2nd `  ( F  |`f  H ) ) y ) `  f ) )  =  ( ( ( y ( 2nd `  F ) z ) `
 g ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x ( 2nd `  F
) y ) `  f ) ) )
159133, 141, 1583eqtr4d 2666 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  ( C  |`cat  H ) )  /\  y  e.  ( Base `  ( C  |`cat  H )
)  /\  z  e.  ( Base `  ( C  |`cat  H ) ) )  /\  ( f  e.  ( x ( Hom  `  ( C  |`cat  H ) ) y )  /\  g  e.  ( y ( Hom  `  ( C  |`cat  H )
) z ) ) )  ->  ( (
x ( 2nd `  ( F  |`f  H ) ) z ) `  ( g ( <. x ,  y
>. (comp `  ( C  |`cat  H ) ) z ) f ) )  =  ( ( ( y ( 2nd `  ( F  |`f  H ) ) z ) `  g ) ( <. ( ( ( 1st `  F )  |`  dom  dom  H ) `  x ) ,  ( ( ( 1st `  F
)  |`  dom  dom  H
) `  y ) >. (comp `  D )
( ( ( 1st `  F )  |`  dom  dom  H ) `  z ) ) ( ( x ( 2nd `  ( F  |`f  H ) ) y ) `  f ) ) )
16015, 16, 17, 18, 19, 20, 21, 22, 24, 27, 40, 51, 81, 102, 159isfuncd 16525 . . 3  |-  ( ph  ->  ( ( 1st `  F
)  |`  dom  dom  H
) ( ( C  |`cat 
H )  Func  D
) ( 2nd `  ( F  |`f  H ) ) )
161 df-br 4654 . . 3  |-  ( ( ( 1st `  F
)  |`  dom  dom  H
) ( ( C  |`cat 
H )  Func  D
) ( 2nd `  ( F  |`f  H ) )  <->  <. ( ( 1st `  F )  |`  dom  dom  H ) ,  ( 2nd `  ( F  |`f  H ) ) >.  e.  ( ( C  |`cat  H
)  Func  D )
)
162160, 161sylib 208 . 2  |-  ( ph  -> 
<. ( ( 1st `  F
)  |`  dom  dom  H
) ,  ( 2nd `  ( F  |`f  H ) ) >.  e.  ( ( C  |`cat  H
)  Func  D )
)
16314, 162eqeltrd 2701 1  |-  ( ph  ->  ( F  |`f  H )  e.  ( ( C  |`cat  H )  Func  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114    |` cres 5116   Rel wrel 5119    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326    |`cat cresc 16468  Subcatcsubc 16469    Func cfunc 16514    |`f cresf 16517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-homf 16331  df-ssc 16470  df-resc 16471  df-subc 16472  df-func 16518  df-resf 16521
This theorem is referenced by:  funcrngcsetc  41998  funcringcsetc  42035
  Copyright terms: Public domain W3C validator