| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restidsingOLD | Structured version Visualization version Unicode version | ||
| Description: Obsolete proof of restidsing 5458 as of 25-Aug-2021. (Contributed by FL, 2-Aug-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| restidsingOLD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5426 |
. 2
| |
| 2 | relxp 5227 |
. 2
| |
| 3 | df-br 4654 |
. . . . . 6
| |
| 4 | 3 | bicomi 214 |
. . . . 5
|
| 5 | 4 | anbi1i 731 |
. . . 4
|
| 6 | simpr 477 |
. . . . . 6
| |
| 7 | velsn 4193 |
. . . . . . . 8
| |
| 8 | vex 3203 |
. . . . . . . . . 10
| |
| 9 | ideqg 5273 |
. . . . . . . . . . 11
| |
| 10 | 9 | biimpd 219 |
. . . . . . . . . 10
|
| 11 | 8, 10 | ax-mp 5 |
. . . . . . . . 9
|
| 12 | eqtr2 2642 |
. . . . . . . . . . 11
| |
| 13 | 12 | ex 450 |
. . . . . . . . . 10
|
| 14 | velsn 4193 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | syl6ibr 242 |
. . . . . . . . 9
|
| 16 | 11, 15 | syl 17 |
. . . . . . . 8
|
| 17 | 7, 16 | syl5bi 232 |
. . . . . . 7
|
| 18 | 17 | imp 445 |
. . . . . 6
|
| 19 | 6, 18 | jca 554 |
. . . . 5
|
| 20 | eqtr3 2643 |
. . . . . . . . . . . 12
| |
| 21 | 8 | ideq 5274 |
. . . . . . . . . . . . 13
|
| 22 | equcom 1945 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | bitri 264 |
. . . . . . . . . . . 12
|
| 24 | 20, 23 | sylibr 224 |
. . . . . . . . . . 11
|
| 25 | 24 | ex 450 |
. . . . . . . . . 10
|
| 26 | 14, 25 | sylbi 207 |
. . . . . . . . 9
|
| 27 | 26 | com12 32 |
. . . . . . . 8
|
| 28 | 7, 27 | sylbi 207 |
. . . . . . 7
|
| 29 | 28 | imp 445 |
. . . . . 6
|
| 30 | simpl 473 |
. . . . . 6
| |
| 31 | 29, 30 | jca 554 |
. . . . 5
|
| 32 | 19, 31 | impbii 199 |
. . . 4
|
| 33 | 5, 32 | bitri 264 |
. . 3
|
| 34 | 8 | opelres 5401 |
. . 3
|
| 35 | opelxp 5146 |
. . 3
| |
| 36 | 33, 34, 35 | 3bitr4i 292 |
. 2
|
| 37 | 1, 2, 36 | eqrelriiv 5214 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-res 5126 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |