MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotasbc Structured version   Visualization version   Unicode version

Theorem riotasbc 6626
Description: Substitution law for descriptions. Compare iotasbc 38620. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotasbc  |-  ( E! x  e.  A  ph  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ph )

Proof of Theorem riotasbc
StepHypRef Expression
1 rabssab 3690 . . 3  |-  { x  e.  A  |  ph }  C_ 
{ x  |  ph }
2 riotacl2 6624 . . 3  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph }
)
31, 2sseldi 3601 . 2  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  |  ph } )
4 df-sbc 3436 . 2  |-  ( [. ( iota_ x  e.  A  ph )  /  x ]. ph  <->  (
iota_ x  e.  A  ph )  e.  { x  |  ph } )
53, 4sylibr 224 1  |-  ( E! x  e.  A  ph  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990   {cab 2608   E!wreu 2914   {crab 2916   [.wsbc 3435   iota_crio 6610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-un 3579  df-in 3581  df-ss 3588  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-riota 6611
This theorem is referenced by:  riotass2  6638  riotass  6639  cjth  13843  joinlem  17011  meetlem  17025  finxpreclem4  33231  poimirlem26  33435  riotasvd  34242  lshpkrlem3  34399
  Copyright terms: Public domain W3C validator