MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisupcl Structured version   Visualization version   Unicode version

Theorem fisupcl 8375
Description: A nonempty finite set contains its supremum. (Contributed by Jeff Madsen, 9-May-2011.)
Assertion
Ref Expression
fisupcl  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  sup ( B ,  A ,  R )  e.  B
)

Proof of Theorem fisupcl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  R  Or  A )
21supval2 8361 . 2  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  sup ( B ,  A ,  R )  =  (
iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) ) )
3 simpr3 1069 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  B  C_  A )
4 breq2 4657 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
y R z  <->  y R x ) )
54rspcev 3309 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  y R x )  ->  E. z  e.  B  y R z )
65ex 450 . . . . . . . . 9  |-  ( x  e.  B  ->  (
y R x  ->  E. z  e.  B  y R z ) )
76ralrimivw 2967 . . . . . . . 8  |-  ( x  e.  B  ->  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) )
87a1d 25 . . . . . . 7  |-  ( x  e.  B  ->  ( A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z )  ->  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
98anim2d 589 . . . . . 6  |-  ( x  e.  B  ->  (
( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R
z ) )  -> 
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) ) )
109rgen 2922 . . . . 5  |-  A. x  e.  B  ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) )  ->  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )
1110a1i 11 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  A. x  e.  B  ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  B  y R z ) )  ->  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )
12 soss 5053 . . . . . 6  |-  ( B 
C_  A  ->  ( R  Or  A  ->  R  Or  B ) )
133, 1, 12sylc 65 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  R  Or  B )
14 simpr1 1067 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  B  e.  Fin )
15 simpr2 1068 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  B  =/=  (/) )
16 fisupg 8208 . . . . 5  |-  ( ( R  Or  B  /\  B  e.  Fin  /\  B  =/=  (/) )  ->  E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  B  y R z ) ) )
1713, 14, 15, 16syl3anc 1326 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) ) )
18 fisup2g 8374 . . . . . 6  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
19 ssrexv 3667 . . . . . 6  |-  ( B 
C_  A  ->  ( E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) ) )
203, 18, 19sylc 65 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
211, 20supeu 8360 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
22 riotass2 6638 . . . 4  |-  ( ( ( B  C_  A  /\  A. x  e.  B  ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  B  y R z ) )  ->  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )  /\  ( E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) )  /\  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )  ->  ( iota_ x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) ) )  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )
233, 11, 17, 21, 22syl22anc 1327 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  -> 
( iota_ x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) ) )  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )
2413, 17supeu 8360 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E! x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) ) )
25 riotacl 6625 . . . 4  |-  ( E! x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) )  ->  ( iota_ x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  B  y R z ) ) )  e.  B )
2624, 25syl 17 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  -> 
( iota_ x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) ) )  e.  B )
2723, 26eqeltrrd 2702 . 2  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  -> 
( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )  e.  B )
282, 27eqeltrd 2701 1  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  sup ( B ,  A ,  R )  e.  B
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914    C_ wss 3574   (/)c0 3915   class class class wbr 4653    Or wor 5034   iota_crio 6610   Fincfn 7955   supcsup 8346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959  df-sup 8348
This theorem is referenced by:  supgtoreq  8376  fiinfcl  8407  supfirege  11009  fseqsupcl  12776  fsuppmapnn0fiublem  12789  isercolllem2  14396  fsumcvg3  14460  mertenslem2  14617  prdsmet  22175  prdsbl  22296  mdegldg  23826  mdegcl  23829  aannenlem2  24084  ssnnssfz  29549  oddpwdc  30416  erdszelem5  31177  poimirlem31  33440  poimirlem32  33441  totbndbnd  33588  prdsbnd  33592  rencldnfilem  37384  aomclem2  37625  fisupclrnmpt  39622  limsupequzlem  39954  fourierdlem25  40349  fourierdlem31  40355  fourierdlem37  40361  etransclem48  40499  hoicvr  40762  ssnn0ssfz  42127
  Copyright terms: Public domain W3C validator