Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoideu Structured version   Visualization version   Unicode version

Theorem rngoideu 33702
Description: The unit element of a ring is unique. (Contributed by NM, 4-Apr-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1  |-  G  =  ( 1st `  R
)
ringi.2  |-  H  =  ( 2nd `  R
)
ringi.3  |-  X  =  ran  G
Assertion
Ref Expression
rngoideu  |-  ( R  e.  RingOps  ->  E! u  e.  X  A. x  e.  X  ( ( u H x )  =  x  /\  ( x H u )  =  x ) )
Distinct variable groups:    x, u, G    u, H, x    u, X, x    u, R, x

Proof of Theorem rngoideu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ringi.1 . . . . 5  |-  G  =  ( 1st `  R
)
2 ringi.2 . . . . 5  |-  H  =  ( 2nd `  R
)
3 ringi.3 . . . . 5  |-  X  =  ran  G
41, 2, 3rngoi 33698 . . . 4  |-  ( R  e.  RingOps  ->  ( ( G  e.  AbelOp  /\  H :
( X  X.  X
) --> X )  /\  ( A. u  e.  X  A. x  e.  X  A. y  e.  X  ( ( ( u H x ) H y )  =  ( u H ( x H y ) )  /\  ( u H ( x G y ) )  =  ( ( u H x ) G ( u H y ) )  /\  ( ( u G x ) H y )  =  ( ( u H y ) G ( x H y ) ) )  /\  E. u  e.  X  A. x  e.  X  ( (
u H x )  =  x  /\  (
x H u )  =  x ) ) ) )
54simprrd 797 . . 3  |-  ( R  e.  RingOps  ->  E. u  e.  X  A. x  e.  X  ( ( u H x )  =  x  /\  ( x H u )  =  x ) )
6 simpl 473 . . . . . . . 8  |-  ( ( ( u H x )  =  x  /\  ( x H u )  =  x )  ->  ( u H x )  =  x )
76ralimi 2952 . . . . . . 7  |-  ( A. x  e.  X  (
( u H x )  =  x  /\  ( x H u )  =  x )  ->  A. x  e.  X  ( u H x )  =  x )
8 oveq2 6658 . . . . . . . . 9  |-  ( x  =  y  ->  (
u H x )  =  ( u H y ) )
9 id 22 . . . . . . . . 9  |-  ( x  =  y  ->  x  =  y )
108, 9eqeq12d 2637 . . . . . . . 8  |-  ( x  =  y  ->  (
( u H x )  =  x  <->  ( u H y )  =  y ) )
1110rspcv 3305 . . . . . . 7  |-  ( y  e.  X  ->  ( A. x  e.  X  ( u H x )  =  x  -> 
( u H y )  =  y ) )
127, 11syl5 34 . . . . . 6  |-  ( y  e.  X  ->  ( A. x  e.  X  ( ( u H x )  =  x  /\  ( x H u )  =  x )  ->  ( u H y )  =  y ) )
13 simpr 477 . . . . . . . 8  |-  ( ( ( y H x )  =  x  /\  ( x H y )  =  x )  ->  ( x H y )  =  x )
1413ralimi 2952 . . . . . . 7  |-  ( A. x  e.  X  (
( y H x )  =  x  /\  ( x H y )  =  x )  ->  A. x  e.  X  ( x H y )  =  x )
15 oveq1 6657 . . . . . . . . 9  |-  ( x  =  u  ->  (
x H y )  =  ( u H y ) )
16 id 22 . . . . . . . . 9  |-  ( x  =  u  ->  x  =  u )
1715, 16eqeq12d 2637 . . . . . . . 8  |-  ( x  =  u  ->  (
( x H y )  =  x  <->  ( u H y )  =  u ) )
1817rspcv 3305 . . . . . . 7  |-  ( u  e.  X  ->  ( A. x  e.  X  ( x H y )  =  x  -> 
( u H y )  =  u ) )
1914, 18syl5 34 . . . . . 6  |-  ( u  e.  X  ->  ( A. x  e.  X  ( ( y H x )  =  x  /\  ( x H y )  =  x )  ->  ( u H y )  =  u ) )
2012, 19im2anan9r 881 . . . . 5  |-  ( ( u  e.  X  /\  y  e.  X )  ->  ( ( A. x  e.  X  ( (
u H x )  =  x  /\  (
x H u )  =  x )  /\  A. x  e.  X  ( ( y H x )  =  x  /\  ( x H y )  =  x ) )  ->  ( (
u H y )  =  y  /\  (
u H y )  =  u ) ) )
21 eqtr2 2642 . . . . . 6  |-  ( ( ( u H y )  =  y  /\  ( u H y )  =  u )  ->  y  =  u )
2221eqcomd 2628 . . . . 5  |-  ( ( ( u H y )  =  y  /\  ( u H y )  =  u )  ->  u  =  y )
2320, 22syl6 35 . . . 4  |-  ( ( u  e.  X  /\  y  e.  X )  ->  ( ( A. x  e.  X  ( (
u H x )  =  x  /\  (
x H u )  =  x )  /\  A. x  e.  X  ( ( y H x )  =  x  /\  ( x H y )  =  x ) )  ->  u  =  y ) )
2423rgen2a 2977 . . 3  |-  A. u  e.  X  A. y  e.  X  ( ( A. x  e.  X  ( ( u H x )  =  x  /\  ( x H u )  =  x )  /\  A. x  e.  X  ( (
y H x )  =  x  /\  (
x H y )  =  x ) )  ->  u  =  y )
255, 24jctir 561 . 2  |-  ( R  e.  RingOps  ->  ( E. u  e.  X  A. x  e.  X  ( (
u H x )  =  x  /\  (
x H u )  =  x )  /\  A. u  e.  X  A. y  e.  X  (
( A. x  e.  X  ( ( u H x )  =  x  /\  ( x H u )  =  x )  /\  A. x  e.  X  (
( y H x )  =  x  /\  ( x H y )  =  x ) )  ->  u  =  y ) ) )
26 oveq1 6657 . . . . . 6  |-  ( u  =  y  ->  (
u H x )  =  ( y H x ) )
2726eqeq1d 2624 . . . . 5  |-  ( u  =  y  ->  (
( u H x )  =  x  <->  ( y H x )  =  x ) )
28 oveq2 6658 . . . . . 6  |-  ( u  =  y  ->  (
x H u )  =  ( x H y ) )
2928eqeq1d 2624 . . . . 5  |-  ( u  =  y  ->  (
( x H u )  =  x  <->  ( x H y )  =  x ) )
3027, 29anbi12d 747 . . . 4  |-  ( u  =  y  ->  (
( ( u H x )  =  x  /\  ( x H u )  =  x )  <->  ( ( y H x )  =  x  /\  ( x H y )  =  x ) ) )
3130ralbidv 2986 . . 3  |-  ( u  =  y  ->  ( A. x  e.  X  ( ( u H x )  =  x  /\  ( x H u )  =  x )  <->  A. x  e.  X  ( ( y H x )  =  x  /\  ( x H y )  =  x ) ) )
3231reu4 3400 . 2  |-  ( E! u  e.  X  A. x  e.  X  (
( u H x )  =  x  /\  ( x H u )  =  x )  <-> 
( E. u  e.  X  A. x  e.  X  ( ( u H x )  =  x  /\  ( x H u )  =  x )  /\  A. u  e.  X  A. y  e.  X  (
( A. x  e.  X  ( ( u H x )  =  x  /\  ( x H u )  =  x )  /\  A. x  e.  X  (
( y H x )  =  x  /\  ( x H y )  =  x ) )  ->  u  =  y ) ) )
3325, 32sylibr 224 1  |-  ( R  e.  RingOps  ->  E! u  e.  X  A. x  e.  X  ( ( u H x )  =  x  /\  ( x H u )  =  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   AbelOpcablo 27398   RingOpscrngo 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-1st 7168  df-2nd 7169  df-rngo 33694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator