Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngodi Structured version   Visualization version   Unicode version

Theorem rngodi 33703
Description: Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1  |-  G  =  ( 1st `  R
)
ringi.2  |-  H  =  ( 2nd `  R
)
ringi.3  |-  X  =  ran  G
Assertion
Ref Expression
rngodi  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A H ( B G C ) )  =  ( ( A H B ) G ( A H C ) ) )

Proof of Theorem rngodi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringi.1 . . . . 5  |-  G  =  ( 1st `  R
)
2 ringi.2 . . . . 5  |-  H  =  ( 2nd `  R
)
3 ringi.3 . . . . 5  |-  X  =  ran  G
41, 2, 3rngoi 33698 . . . 4  |-  ( R  e.  RingOps  ->  ( ( G  e.  AbelOp  /\  H :
( X  X.  X
) --> X )  /\  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e.  X  A. y  e.  X  ( (
x H y )  =  y  /\  (
y H x )  =  y ) ) ) )
54simprd 479 . . 3  |-  ( R  e.  RingOps  ->  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e.  X  A. y  e.  X  (
( x H y )  =  y  /\  ( y H x )  =  y ) ) )
65simpld 475 . 2  |-  ( R  e.  RingOps  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) ) )
7 simp2 1062 . . . . 5  |-  ( ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  ->  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) ) )
87ralimi 2952 . . . 4  |-  ( A. z  e.  X  (
( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  ->  A. z  e.  X  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) ) )
982ralimi 2953 . . 3  |-  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) ) )
10 oveq1 6657 . . . . 5  |-  ( x  =  A  ->  (
x H ( y G z ) )  =  ( A H ( y G z ) ) )
11 oveq1 6657 . . . . . 6  |-  ( x  =  A  ->  (
x H y )  =  ( A H y ) )
12 oveq1 6657 . . . . . 6  |-  ( x  =  A  ->  (
x H z )  =  ( A H z ) )
1311, 12oveq12d 6668 . . . . 5  |-  ( x  =  A  ->  (
( x H y ) G ( x H z ) )  =  ( ( A H y ) G ( A H z ) ) )
1410, 13eqeq12d 2637 . . . 4  |-  ( x  =  A  ->  (
( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  <->  ( A H ( y G z ) )  =  ( ( A H y ) G ( A H z ) ) ) )
15 oveq1 6657 . . . . . 6  |-  ( y  =  B  ->  (
y G z )  =  ( B G z ) )
1615oveq2d 6666 . . . . 5  |-  ( y  =  B  ->  ( A H ( y G z ) )  =  ( A H ( B G z ) ) )
17 oveq2 6658 . . . . . 6  |-  ( y  =  B  ->  ( A H y )  =  ( A H B ) )
1817oveq1d 6665 . . . . 5  |-  ( y  =  B  ->  (
( A H y ) G ( A H z ) )  =  ( ( A H B ) G ( A H z ) ) )
1916, 18eqeq12d 2637 . . . 4  |-  ( y  =  B  ->  (
( A H ( y G z ) )  =  ( ( A H y ) G ( A H z ) )  <->  ( A H ( B G z ) )  =  ( ( A H B ) G ( A H z ) ) ) )
20 oveq2 6658 . . . . . 6  |-  ( z  =  C  ->  ( B G z )  =  ( B G C ) )
2120oveq2d 6666 . . . . 5  |-  ( z  =  C  ->  ( A H ( B G z ) )  =  ( A H ( B G C ) ) )
22 oveq2 6658 . . . . . 6  |-  ( z  =  C  ->  ( A H z )  =  ( A H C ) )
2322oveq2d 6666 . . . . 5  |-  ( z  =  C  ->  (
( A H B ) G ( A H z ) )  =  ( ( A H B ) G ( A H C ) ) )
2421, 23eqeq12d 2637 . . . 4  |-  ( z  =  C  ->  (
( A H ( B G z ) )  =  ( ( A H B ) G ( A H z ) )  <->  ( A H ( B G C ) )  =  ( ( A H B ) G ( A H C ) ) ) )
2514, 19, 24rspc3v 3325 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  ->  ( A H ( B G C ) )  =  ( ( A H B ) G ( A H C ) ) ) )
269, 25syl5 34 . 2  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  ->  ( A H ( B G C ) )  =  ( ( A H B ) G ( A H C ) ) ) )
276, 26mpan9 486 1  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A H ( B G C ) )  =  ( ( A H B ) G ( A H C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   AbelOpcablo 27398   RingOpscrngo 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-1st 7168  df-2nd 7169  df-rngo 33694
This theorem is referenced by:  rngorz  33722  rngonegmn1r  33741  rngosubdi  33744
  Copyright terms: Public domain W3C validator