Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngokerinj Structured version   Visualization version   Unicode version

Theorem rngokerinj 33774
Description: A ring homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
rngkerinj.1  |-  G  =  ( 1st `  R
)
rngkerinj.2  |-  X  =  ran  G
rngkerinj.3  |-  W  =  (GId `  G )
rngkerinj.4  |-  J  =  ( 1st `  S
)
rngkerinj.5  |-  Y  =  ran  J
rngkerinj.6  |-  Z  =  (GId `  J )
Assertion
Ref Expression
rngokerinj  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( F : X -1-1-> Y  <->  ( `' F " { Z } )  =  { W }
) )

Proof of Theorem rngokerinj
StepHypRef Expression
1 eqid 2622 . . . 4  |-  ( 1st `  R )  =  ( 1st `  R )
21rngogrpo 33709 . . 3  |-  ( R  e.  RingOps  ->  ( 1st `  R
)  e.  GrpOp )
323ad2ant1 1082 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( 1st `  R )  e.  GrpOp )
4 eqid 2622 . . . 4  |-  ( 1st `  S )  =  ( 1st `  S )
54rngogrpo 33709 . . 3  |-  ( S  e.  RingOps  ->  ( 1st `  S
)  e.  GrpOp )
653ad2ant2 1083 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( 1st `  S )  e.  GrpOp )
71, 4rngogrphom 33770 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  F  e.  ( ( 1st `  R
) GrpOpHom  ( 1st `  S
) ) )
8 rngkerinj.2 . . . 4  |-  X  =  ran  G
9 rngkerinj.1 . . . . 5  |-  G  =  ( 1st `  R
)
109rneqi 5352 . . . 4  |-  ran  G  =  ran  ( 1st `  R
)
118, 10eqtri 2644 . . 3  |-  X  =  ran  ( 1st `  R
)
12 rngkerinj.3 . . . 4  |-  W  =  (GId `  G )
139fveq2i 6194 . . . 4  |-  (GId `  G )  =  (GId
`  ( 1st `  R
) )
1412, 13eqtri 2644 . . 3  |-  W  =  (GId `  ( 1st `  R ) )
15 rngkerinj.5 . . . 4  |-  Y  =  ran  J
16 rngkerinj.4 . . . . 5  |-  J  =  ( 1st `  S
)
1716rneqi 5352 . . . 4  |-  ran  J  =  ran  ( 1st `  S
)
1815, 17eqtri 2644 . . 3  |-  Y  =  ran  ( 1st `  S
)
19 rngkerinj.6 . . . 4  |-  Z  =  (GId `  J )
2016fveq2i 6194 . . . 4  |-  (GId `  J )  =  (GId
`  ( 1st `  S
) )
2119, 20eqtri 2644 . . 3  |-  Z  =  (GId `  ( 1st `  S ) )
2211, 14, 18, 21grpokerinj 33692 . 2  |-  ( ( ( 1st `  R
)  e.  GrpOp  /\  ( 1st `  S )  e. 
GrpOp  /\  F  e.  ( ( 1st `  R
) GrpOpHom  ( 1st `  S
) ) )  -> 
( F : X -1-1-> Y  <-> 
( `' F " { Z } )  =  { W } ) )
233, 6, 7, 22syl3anc 1326 1  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( F : X -1-1-> Y  <->  ( `' F " { Z } )  =  { W }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   {csn 4177   `'ccnv 5113   ran crn 5115   "cima 5117   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650   1stc1st 7166   GrpOpcgr 27343  GIdcgi 27344   GrpOpHom cghomOLD 33682   RingOpscrngo 33693    RngHom crnghom 33759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-ghomOLD 33683  df-rngo 33694  df-rngohom 33762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator