Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmpt0 Structured version   Visualization version   Unicode version

Theorem rnmpt0 39412
Description: The range of a function in map-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
rnmpt0.1  |-  F/ x ph
rnmpt0.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
rnmpt0.3  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
rnmpt0  |-  ( ph  ->  ( ran  F  =  (/) 
<->  A  =  (/) ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    F( x)    V( x)

Proof of Theorem rnmpt0
StepHypRef Expression
1 rnmpt0.1 . . . . . 6  |-  F/ x ph
2 rnmpt0.2 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
32ex 450 . . . . . 6  |-  ( ph  ->  ( x  e.  A  ->  B  e.  V ) )
41, 3ralrimi 2957 . . . . 5  |-  ( ph  ->  A. x  e.  A  B  e.  V )
5 dmmptg 5632 . . . . 5  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
64, 5syl 17 . . . 4  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
76eqcomd 2628 . . 3  |-  ( ph  ->  A  =  dom  (
x  e.  A  |->  B ) )
87eqeq1d 2624 . 2  |-  ( ph  ->  ( A  =  (/)  <->  dom  ( x  e.  A  |->  B )  =  (/) ) )
9 dm0rn0 5342 . . 3  |-  ( dom  ( x  e.  A  |->  B )  =  (/)  <->  ran  ( x  e.  A  |->  B )  =  (/) )
109a1i 11 . 2  |-  ( ph  ->  ( dom  ( x  e.  A  |->  B )  =  (/)  <->  ran  ( x  e.  A  |->  B )  =  (/) ) )
11 rnmpt0.3 . . . . . 6  |-  F  =  ( x  e.  A  |->  B )
1211rneqi 5352 . . . . 5  |-  ran  F  =  ran  ( x  e.  A  |->  B )
1312a1i 11 . . . 4  |-  ( ph  ->  ran  F  =  ran  ( x  e.  A  |->  B ) )
1413eqcomd 2628 . . 3  |-  ( ph  ->  ran  ( x  e.  A  |->  B )  =  ran  F )
1514eqeq1d 2624 . 2  |-  ( ph  ->  ( ran  ( x  e.  A  |->  B )  =  (/)  <->  ran  F  =  (/) ) )
168, 10, 153bitrrd 295 1  |-  ( ph  ->  ( ran  F  =  (/) 
<->  A  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   (/)c0 3915    |-> cmpt 4729   dom cdm 5114   ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  rnmptn0  39413
  Copyright terms: Public domain W3C validator