Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimiooltgt Structured version   Visualization version   Unicode version

Theorem pimiooltgt 40921
Description: The preimage of an open interval is the intersection of the preimage of an unbounded below open interval and an unbounded above open interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimiooltgt.1  |-  F/ x ph
pimiooltgt.2  |-  ( ph  ->  L  e.  RR* )
pimiooltgt.3  |-  ( ph  ->  R  e.  RR* )
pimiooltgt.4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR* )
Assertion
Ref Expression
pimiooltgt  |-  ( ph  ->  { x  e.  A  |  B  e.  ( L (,) R ) }  =  ( { x  e.  A  |  B  <  R }  i^i  {
x  e.  A  |  L  <  B } ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    R( x)    L( x)

Proof of Theorem pimiooltgt
StepHypRef Expression
1 pimiooltgt.1 . . . . 5  |-  F/ x ph
2 pimiooltgt.2 . . . . . . . . 9  |-  ( ph  ->  L  e.  RR* )
32adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  L  e.  RR* )
433adant3 1081 . . . . . . 7  |-  ( (
ph  /\  x  e.  A  /\  B  e.  ( L (,) R ) )  ->  L  e.  RR* )
5 pimiooltgt.3 . . . . . . . . 9  |-  ( ph  ->  R  e.  RR* )
65adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  RR* )
763adant3 1081 . . . . . . 7  |-  ( (
ph  /\  x  e.  A  /\  B  e.  ( L (,) R ) )  ->  R  e.  RR* )
8 simp3 1063 . . . . . . 7  |-  ( (
ph  /\  x  e.  A  /\  B  e.  ( L (,) R ) )  ->  B  e.  ( L (,) R ) )
9 iooltub 39735 . . . . . . 7  |-  ( ( L  e.  RR*  /\  R  e.  RR*  /\  B  e.  ( L (,) R
) )  ->  B  <  R )
104, 7, 8, 9syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  x  e.  A  /\  B  e.  ( L (,) R ) )  ->  B  <  R )
11103exp 1264 . . . . 5  |-  ( ph  ->  ( x  e.  A  ->  ( B  e.  ( L (,) R )  ->  B  <  R
) ) )
121, 11ralrimi 2957 . . . 4  |-  ( ph  ->  A. x  e.  A  ( B  e.  ( L (,) R )  ->  B  <  R ) )
13 ss2rab 3678 . . . 4  |-  ( { x  e.  A  |  B  e.  ( L (,) R ) }  C_  { x  e.  A  |  B  <  R }  <->  A. x  e.  A  ( B  e.  ( L (,) R
)  ->  B  <  R ) )
1412, 13sylibr 224 . . 3  |-  ( ph  ->  { x  e.  A  |  B  e.  ( L (,) R ) } 
C_  { x  e.  A  |  B  < 
R } )
15 ioogtlb 39717 . . . . . . 7  |-  ( ( L  e.  RR*  /\  R  e.  RR*  /\  B  e.  ( L (,) R
) )  ->  L  <  B )
164, 7, 8, 15syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  x  e.  A  /\  B  e.  ( L (,) R ) )  ->  L  <  B )
17163exp 1264 . . . . 5  |-  ( ph  ->  ( x  e.  A  ->  ( B  e.  ( L (,) R )  ->  L  <  B
) ) )
181, 17ralrimi 2957 . . . 4  |-  ( ph  ->  A. x  e.  A  ( B  e.  ( L (,) R )  ->  L  <  B ) )
19 ss2rab 3678 . . . 4  |-  ( { x  e.  A  |  B  e.  ( L (,) R ) }  C_  { x  e.  A  |  L  <  B }  <->  A. x  e.  A  ( B  e.  ( L (,) R
)  ->  L  <  B ) )
2018, 19sylibr 224 . . 3  |-  ( ph  ->  { x  e.  A  |  B  e.  ( L (,) R ) } 
C_  { x  e.  A  |  L  < 
B } )
2114, 20ssind 3837 . 2  |-  ( ph  ->  { x  e.  A  |  B  e.  ( L (,) R ) } 
C_  ( { x  e.  A  |  B  <  R }  i^i  {
x  e.  A  |  L  <  B } ) )
22 elinel1 3799 . . . . . . . . 9  |-  ( x  e.  ( { x  e.  A  |  B  <  R }  i^i  {
x  e.  A  |  L  <  B } )  ->  x  e.  {
x  e.  A  |  B  <  R } )
23 ssrab2 3687 . . . . . . . . . 10  |-  { x  e.  A  |  B  <  R }  C_  A
2423sseli 3599 . . . . . . . . 9  |-  ( x  e.  { x  e.  A  |  B  < 
R }  ->  x  e.  A )
2522, 24syl 17 . . . . . . . 8  |-  ( x  e.  ( { x  e.  A  |  B  <  R }  i^i  {
x  e.  A  |  L  <  B } )  ->  x  e.  A
)
2625adantl 482 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  ->  x  e.  A )
2726, 3syldan 487 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  ->  L  e.  RR* )
2826, 6syldan 487 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  ->  R  e.  RR* )
29 pimiooltgt.4 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR* )
3026, 29syldan 487 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  ->  B  e.  RR* )
31 mnfxr 10096 . . . . . . . . . . . 12  |- -oo  e.  RR*
3231a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  -> -oo  e.  RR* )
3327mnfled 39609 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  -> -oo  <_  L )
34 elinel2 3800 . . . . . . . . . . . . . 14  |-  ( x  e.  ( { x  e.  A  |  B  <  R }  i^i  {
x  e.  A  |  L  <  B } )  ->  x  e.  {
x  e.  A  |  L  <  B } )
35 rabidim2 39284 . . . . . . . . . . . . . 14  |-  ( x  e.  { x  e.  A  |  L  < 
B }  ->  L  <  B )
3634, 35syl 17 . . . . . . . . . . . . 13  |-  ( x  e.  ( { x  e.  A  |  B  <  R }  i^i  {
x  e.  A  |  L  <  B } )  ->  L  <  B
)
3736adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  ->  L  <  B )
3832, 27, 30, 33, 37xrlelttrd 11991 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  -> -oo  <  B )
3932, 30, 38xrltned 39573 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  -> -oo  =/=  B )
4039necomd 2849 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  ->  B  =/= -oo )
41 pnfxr 10092 . . . . . . . . . . 11  |- +oo  e.  RR*
4241a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  -> +oo  e.  RR* )
43 rabidim2 39284 . . . . . . . . . . . . 13  |-  ( x  e.  { x  e.  A  |  B  < 
R }  ->  B  <  R )
4422, 43syl 17 . . . . . . . . . . . 12  |-  ( x  e.  ( { x  e.  A  |  B  <  R }  i^i  {
x  e.  A  |  L  <  B } )  ->  B  <  R
)
4544adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  ->  B  <  R )
46 pnfge 11964 . . . . . . . . . . . 12  |-  ( R  e.  RR*  ->  R  <_ +oo )
4728, 46syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  ->  R  <_ +oo )
4830, 28, 42, 45, 47xrltletrd 11992 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  ->  B  < +oo )
4930, 42, 48xrltned 39573 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  ->  B  =/= +oo )
5030, 40, 49xrred 39581 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  ->  B  e.  RR )
5127, 28, 50, 37, 45eliood 39720 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  ->  B  e.  ( L (,) R
) )
5226, 51jca 554 . . . . . 6  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  ->  (
x  e.  A  /\  B  e.  ( L (,) R ) ) )
53 rabid 3116 . . . . . 6  |-  ( x  e.  { x  e.  A  |  B  e.  ( L (,) R
) }  <->  ( x  e.  A  /\  B  e.  ( L (,) R
) ) )
5452, 53sylibr 224 . . . . 5  |-  ( (
ph  /\  x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) )  ->  x  e.  { x  e.  A  |  B  e.  ( L (,) R ) } )
5554ex 450 . . . 4  |-  ( ph  ->  ( x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
)  ->  x  e.  { x  e.  A  |  B  e.  ( L (,) R ) } ) )
561, 55ralrimi 2957 . . 3  |-  ( ph  ->  A. x  e.  ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
) x  e.  {
x  e.  A  |  B  e.  ( L (,) R ) } )
57 nfrab1 3122 . . . . 5  |-  F/_ x { x  e.  A  |  B  <  R }
58 nfrab1 3122 . . . . 5  |-  F/_ x { x  e.  A  |  L  <  B }
5957, 58nfin 3820 . . . 4  |-  F/_ x
( { x  e.  A  |  B  < 
R }  i^i  {
x  e.  A  |  L  <  B } )
60 nfrab1 3122 . . . 4  |-  F/_ x { x  e.  A  |  B  e.  ( L (,) R ) }
6159, 60dfss3f 3595 . . 3  |-  ( ( { x  e.  A  |  B  <  R }  i^i  { x  e.  A  |  L  <  B }
)  C_  { x  e.  A  |  B  e.  ( L (,) R
) }  <->  A. x  e.  ( { x  e.  A  |  B  < 
R }  i^i  {
x  e.  A  |  L  <  B } ) x  e.  { x  e.  A  |  B  e.  ( L (,) R
) } )
6256, 61sylibr 224 . 2  |-  ( ph  ->  ( { x  e.  A  |  B  < 
R }  i^i  {
x  e.  A  |  L  <  B } ) 
C_  { x  e.  A  |  B  e.  ( L (,) R
) } )
6321, 62eqssd 3620 1  |-  ( ph  ->  { x  e.  A  |  B  e.  ( L (,) R ) }  =  ( { x  e.  A  |  B  <  R }  i^i  {
x  e.  A  |  L  <  B } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   {crab 2916    i^i cin 3573    C_ wss 3574   class class class wbr 4653  (class class class)co 6650   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179
This theorem is referenced by:  smfpimioompt  40993
  Copyright terms: Public domain W3C validator