MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnn04if Structured version   Visualization version   Unicode version

Theorem fvmptnn04if 20654
Description: The function values of a mapping from the nonnegative integers with four distinct cases. (Contributed by AV, 10-Nov-2019.)
Hypotheses
Ref Expression
fvmptnn04if.g  |-  G  =  ( n  e.  NN0  |->  if ( n  =  0 ,  A ,  if ( n  =  S ,  C ,  if ( S  <  n ,  D ,  B ) ) ) )
fvmptnn04if.s  |-  ( ph  ->  S  e.  NN )
fvmptnn04if.n  |-  ( ph  ->  N  e.  NN0 )
fvmptnn04if.y  |-  ( ph  ->  Y  e.  V )
fvmptnn04if.a  |-  ( (
ph  /\  N  = 
0 )  ->  Y  =  [_ N  /  n ]_ A )
fvmptnn04if.b  |-  ( (
ph  /\  0  <  N  /\  N  <  S
)  ->  Y  =  [_ N  /  n ]_ B )
fvmptnn04if.c  |-  ( (
ph  /\  N  =  S )  ->  Y  =  [_ N  /  n ]_ C )
fvmptnn04if.d  |-  ( (
ph  /\  S  <  N )  ->  Y  =  [_ N  /  n ]_ D )
Assertion
Ref Expression
fvmptnn04if  |-  ( ph  ->  ( G `  N
)  =  Y )
Distinct variable groups:    n, N    S, n
Allowed substitution hints:    ph( n)    A( n)    B( n)    C( n)    D( n)    G( n)    V( n)    Y( n)

Proof of Theorem fvmptnn04if
StepHypRef Expression
1 fvmptnn04if.n . . 3  |-  ( ph  ->  N  e.  NN0 )
2 csbif 4138 . . . . 5  |-  [_ N  /  n ]_ if ( n  =  0 ,  A ,  if ( n  =  S ,  C ,  if ( S  <  n ,  D ,  B ) ) )  =  if ( [. N  /  n ]. n  =  0 ,  [_ N  /  n ]_ A ,  [_ N  /  n ]_ if ( n  =  S ,  C ,  if ( S  <  n ,  D ,  B ) ) )
3 eqsbc3 3475 . . . . . . 7  |-  ( N  e.  NN0  ->  ( [. N  /  n ]. n  =  0  <->  N  = 
0 ) )
41, 3syl 17 . . . . . 6  |-  ( ph  ->  ( [. N  /  n ]. n  =  0  <-> 
N  =  0 ) )
5 csbif 4138 . . . . . . 7  |-  [_ N  /  n ]_ if ( n  =  S ,  C ,  if ( S  <  n ,  D ,  B ) )  =  if ( [. N  /  n ]. n  =  S ,  [_ N  /  n ]_ C ,  [_ N  /  n ]_ if ( S  < 
n ,  D ,  B ) )
6 eqsbc3 3475 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( [. N  /  n ]. n  =  S  <->  N  =  S
) )
71, 6syl 17 . . . . . . . 8  |-  ( ph  ->  ( [. N  /  n ]. n  =  S  <-> 
N  =  S ) )
8 csbif 4138 . . . . . . . . 9  |-  [_ N  /  n ]_ if ( S  <  n ,  D ,  B )  =  if ( [. N  /  n ]. S  <  n ,  [_ N  /  n ]_ D ,  [_ N  /  n ]_ B )
9 sbcbr2g 4710 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( [. N  /  n ]. S  <  n  <->  S  <  [_ N  /  n ]_ n ) )
101, 9syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( [. N  /  n ]. S  <  n  <->  S  <  [_ N  /  n ]_ n ) )
11 csbvarg 4003 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  [_ N  /  n ]_ n  =  N )
121, 11syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  [_ N  /  n ]_ n  =  N
)
1312breq2d 4665 . . . . . . . . . . 11  |-  ( ph  ->  ( S  <  [_ N  /  n ]_ n  <->  S  <  N ) )
1410, 13bitrd 268 . . . . . . . . . 10  |-  ( ph  ->  ( [. N  /  n ]. S  <  n  <->  S  <  N ) )
1514ifbid 4108 . . . . . . . . 9  |-  ( ph  ->  if ( [. N  /  n ]. S  < 
n ,  [_ N  /  n ]_ D ,  [_ N  /  n ]_ B )  =  if ( S  <  N ,  [_ N  /  n ]_ D ,  [_ N  /  n ]_ B ) )
168, 15syl5eq 2668 . . . . . . . 8  |-  ( ph  ->  [_ N  /  n ]_ if ( S  < 
n ,  D ,  B )  =  if ( S  <  N ,  [_ N  /  n ]_ D ,  [_ N  /  n ]_ B ) )
177, 16ifbieq2d 4111 . . . . . . 7  |-  ( ph  ->  if ( [. N  /  n ]. n  =  S ,  [_ N  /  n ]_ C ,  [_ N  /  n ]_ if ( S  < 
n ,  D ,  B ) )  =  if ( N  =  S ,  [_ N  /  n ]_ C ,  if ( S  <  N ,  [_ N  /  n ]_ D ,  [_ N  /  n ]_ B ) ) )
185, 17syl5eq 2668 . . . . . 6  |-  ( ph  ->  [_ N  /  n ]_ if ( n  =  S ,  C ,  if ( S  <  n ,  D ,  B ) )  =  if ( N  =  S ,  [_ N  /  n ]_ C ,  if ( S  <  N ,  [_ N  /  n ]_ D ,  [_ N  /  n ]_ B ) ) )
194, 18ifbieq2d 4111 . . . . 5  |-  ( ph  ->  if ( [. N  /  n ]. n  =  0 ,  [_ N  /  n ]_ A ,  [_ N  /  n ]_ if ( n  =  S ,  C ,  if ( S  <  n ,  D ,  B ) ) )  =  if ( N  =  0 ,  [_ N  /  n ]_ A ,  if ( N  =  S ,  [_ N  /  n ]_ C ,  if ( S  <  N ,  [_ N  /  n ]_ D ,  [_ N  /  n ]_ B ) ) ) )
202, 19syl5eq 2668 . . . 4  |-  ( ph  ->  [_ N  /  n ]_ if ( n  =  0 ,  A ,  if ( n  =  S ,  C ,  if ( S  <  n ,  D ,  B ) ) )  =  if ( N  =  0 ,  [_ N  /  n ]_ A ,  if ( N  =  S ,  [_ N  /  n ]_ C ,  if ( S  <  N ,  [_ N  /  n ]_ D ,  [_ N  /  n ]_ B ) ) ) )
21 fvmptnn04if.a . . . . . 6  |-  ( (
ph  /\  N  = 
0 )  ->  Y  =  [_ N  /  n ]_ A )
22 fvmptnn04if.y . . . . . . 7  |-  ( ph  ->  Y  e.  V )
2322adantr 481 . . . . . 6  |-  ( (
ph  /\  N  = 
0 )  ->  Y  e.  V )
2421, 23eqeltrrd 2702 . . . . 5  |-  ( (
ph  /\  N  = 
0 )  ->  [_ N  /  n ]_ A  e.  V )
25 fvmptnn04if.c . . . . . . . . 9  |-  ( (
ph  /\  N  =  S )  ->  Y  =  [_ N  /  n ]_ C )
2625eqcomd 2628 . . . . . . . 8  |-  ( (
ph  /\  N  =  S )  ->  [_ N  /  n ]_ C  =  Y )
2726adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  -.  N  =  0 )  /\  N  =  S )  ->  [_ N  /  n ]_ C  =  Y )
2822ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  -.  N  =  0 )  /\  N  =  S )  ->  Y  e.  V )
2927, 28eqeltrd 2701 . . . . . 6  |-  ( ( ( ph  /\  -.  N  =  0 )  /\  N  =  S )  ->  [_ N  /  n ]_ C  e.  V
)
30 fvmptnn04if.d . . . . . . . . . . . 12  |-  ( (
ph  /\  S  <  N )  ->  Y  =  [_ N  /  n ]_ D )
3130eqcomd 2628 . . . . . . . . . . 11  |-  ( (
ph  /\  S  <  N )  ->  [_ N  /  n ]_ D  =  Y )
3231ex 450 . . . . . . . . . 10  |-  ( ph  ->  ( S  <  N  ->  [_ N  /  n ]_ D  =  Y
) )
3332ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  N  =  0 )  /\  -.  N  =  S )  ->  ( S  <  N  ->  [_ N  /  n ]_ D  =  Y ) )
3433imp 445 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  N  =  0
)  /\  -.  N  =  S )  /\  S  <  N )  ->  [_ N  /  n ]_ D  =  Y )
3522ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  N  =  0
)  /\  -.  N  =  S )  /\  S  <  N )  ->  Y  e.  V )
3634, 35eqeltrd 2701 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  N  =  0
)  /\  -.  N  =  S )  /\  S  <  N )  ->  [_ N  /  n ]_ D  e.  V )
37 simplll 798 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  N  =  0
)  /\  -.  N  =  S )  /\  -.  S  <  N )  ->  ph )
38 ancom 466 . . . . . . . . . . . . 13  |-  ( ( -.  S  <  N  /\  ph )  <->  ( ph  /\ 
-.  S  <  N
) )
3938anbi2i 730 . . . . . . . . . . . 12  |-  ( ( ( -.  N  =  0  /\  -.  N  =  S )  /\  ( -.  S  <  N  /\  ph ) )  <->  ( ( -.  N  =  0  /\  -.  N  =  S )  /\  ( ph  /\ 
-.  S  <  N
) ) )
40 ancom 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  < 
N ) ) )  <-> 
( ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  <  N
) )  /\  ph ) )
41 anass 681 . . . . . . . . . . . . . . 15  |-  ( ( ( -.  N  =  0  /\  -.  N  =  S )  /\  -.  S  <  N )  <->  ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  < 
N ) ) )
4241bicomi 214 . . . . . . . . . . . . . 14  |-  ( ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  <  N ) )  <->  ( ( -.  N  =  0  /\  -.  N  =  S )  /\  -.  S  <  N ) )
4342anbi1i 731 . . . . . . . . . . . . 13  |-  ( ( ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  <  N ) )  /\  ph )  <->  ( ( ( -.  N  =  0  /\  -.  N  =  S )  /\  -.  S  <  N
)  /\  ph ) )
44 anass 681 . . . . . . . . . . . . 13  |-  ( ( ( ( -.  N  =  0  /\  -.  N  =  S )  /\  -.  S  <  N
)  /\  ph )  <->  ( ( -.  N  =  0  /\  -.  N  =  S )  /\  ( -.  S  <  N  /\  ph ) ) )
4540, 43, 443bitri 286 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  < 
N ) ) )  <-> 
( ( -.  N  =  0  /\  -.  N  =  S )  /\  ( -.  S  < 
N  /\  ph ) ) )
46 anass 681 . . . . . . . . . . . 12  |-  ( ( ( ( -.  N  =  0  /\  -.  N  =  S )  /\  ph )  /\  -.  S  <  N )  <->  ( ( -.  N  =  0  /\  -.  N  =  S )  /\  ( ph  /\ 
-.  S  <  N
) ) )
4739, 45, 463bitr4i 292 . . . . . . . . . . 11  |-  ( (
ph  /\  ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  < 
N ) ) )  <-> 
( ( ( -.  N  =  0  /\ 
-.  N  =  S )  /\  ph )  /\  -.  S  <  N
) )
48 an32 839 . . . . . . . . . . . . 13  |-  ( ( ( -.  N  =  0  /\  -.  N  =  S )  /\  ph ) 
<->  ( ( -.  N  =  0  /\  ph )  /\  -.  N  =  S ) )
49 ancom 466 . . . . . . . . . . . . . 14  |-  ( ( -.  N  =  0  /\  ph )  <->  ( ph  /\ 
-.  N  =  0 ) )
5049anbi1i 731 . . . . . . . . . . . . 13  |-  ( ( ( -.  N  =  0  /\  ph )  /\  -.  N  =  S )  <->  ( ( ph  /\ 
-.  N  =  0 )  /\  -.  N  =  S ) )
5148, 50bitri 264 . . . . . . . . . . . 12  |-  ( ( ( -.  N  =  0  /\  -.  N  =  S )  /\  ph ) 
<->  ( ( ph  /\  -.  N  =  0
)  /\  -.  N  =  S ) )
5251anbi1i 731 . . . . . . . . . . 11  |-  ( ( ( ( -.  N  =  0  /\  -.  N  =  S )  /\  ph )  /\  -.  S  <  N )  <->  ( (
( ph  /\  -.  N  =  0 )  /\  -.  N  =  S
)  /\  -.  S  <  N ) )
5347, 52bitri 264 . . . . . . . . . 10  |-  ( (
ph  /\  ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  < 
N ) ) )  <-> 
( ( ( ph  /\ 
-.  N  =  0 )  /\  -.  N  =  S )  /\  -.  S  <  N ) )
54 df-ne 2795 . . . . . . . . . . . . 13  |-  ( N  =/=  0  <->  -.  N  =  0 )
55 elnnne0 11306 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  N  =/=  0 ) )
56 nngt0 11049 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  0  <  N )
5755, 56sylbir 225 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  N  =/=  0 )  -> 
0  <  N )
5857expcom 451 . . . . . . . . . . . . 13  |-  ( N  =/=  0  ->  ( N  e.  NN0  ->  0  <  N ) )
5954, 58sylbir 225 . . . . . . . . . . . 12  |-  ( -.  N  =  0  -> 
( N  e.  NN0  ->  0  <  N ) )
6059adantr 481 . . . . . . . . . . 11  |-  ( ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  <  N ) )  -> 
( N  e.  NN0  ->  0  <  N ) )
611, 60mpan9 486 . . . . . . . . . 10  |-  ( (
ph  /\  ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  < 
N ) ) )  ->  0  <  N
)
6253, 61sylbir 225 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  N  =  0
)  /\  -.  N  =  S )  /\  -.  S  <  N )  -> 
0  <  N )
631nn0red 11352 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  RR )
64 fvmptnn04if.s . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  S  e.  NN )
6564nnred 11035 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  S  e.  RR )
6663, 65lenltd 10183 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N  <_  S  <->  -.  S  <  N ) )
6766biimprd 238 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( -.  S  < 
N  ->  N  <_  S ) )
6867adantld 483 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( -.  N  =  S  /\  -.  S  <  N )  ->  N  <_  S ) )
6968adantld 483 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  <  N
) )  ->  N  <_  S ) )
7069imp 445 . . . . . . . . . . 11  |-  ( (
ph  /\  ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  < 
N ) ) )  ->  N  <_  S
)
71 nesym 2850 . . . . . . . . . . . . . 14  |-  ( S  =/=  N  <->  -.  N  =  S )
7271biimpri 218 . . . . . . . . . . . . 13  |-  ( -.  N  =  S  ->  S  =/=  N )
7372adantr 481 . . . . . . . . . . . 12  |-  ( ( -.  N  =  S  /\  -.  S  < 
N )  ->  S  =/=  N )
7473ad2antll 765 . . . . . . . . . . 11  |-  ( (
ph  /\  ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  < 
N ) ) )  ->  S  =/=  N
)
7563adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  < 
N ) ) )  ->  N  e.  RR )
7665adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  < 
N ) ) )  ->  S  e.  RR )
7775, 76ltlend 10182 . . . . . . . . . . 11  |-  ( (
ph  /\  ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  < 
N ) ) )  ->  ( N  < 
S  <->  ( N  <_  S  /\  S  =/=  N
) ) )
7870, 74, 77mpbir2and 957 . . . . . . . . . 10  |-  ( (
ph  /\  ( -.  N  =  0  /\  ( -.  N  =  S  /\  -.  S  < 
N ) ) )  ->  N  <  S
)
7953, 78sylbir 225 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  N  =  0
)  /\  -.  N  =  S )  /\  -.  S  <  N )  ->  N  <  S )
80 fvmptnn04if.b . . . . . . . . . 10  |-  ( (
ph  /\  0  <  N  /\  N  <  S
)  ->  Y  =  [_ N  /  n ]_ B )
8180eqcomd 2628 . . . . . . . . 9  |-  ( (
ph  /\  0  <  N  /\  N  <  S
)  ->  [_ N  /  n ]_ B  =  Y )
8237, 62, 79, 81syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  N  =  0
)  /\  -.  N  =  S )  /\  -.  S  <  N )  ->  [_ N  /  n ]_ B  =  Y
)
8322ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  N  =  0
)  /\  -.  N  =  S )  /\  -.  S  <  N )  ->  Y  e.  V )
8482, 83eqeltrd 2701 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  N  =  0
)  /\  -.  N  =  S )  /\  -.  S  <  N )  ->  [_ N  /  n ]_ B  e.  V
)
8536, 84ifclda 4120 . . . . . 6  |-  ( ( ( ph  /\  -.  N  =  0 )  /\  -.  N  =  S )  ->  if ( S  <  N ,  [_ N  /  n ]_ D ,  [_ N  /  n ]_ B )  e.  V )
8629, 85ifclda 4120 . . . . 5  |-  ( (
ph  /\  -.  N  =  0 )  ->  if ( N  =  S ,  [_ N  /  n ]_ C ,  if ( S  <  N ,  [_ N  /  n ]_ D ,  [_ N  /  n ]_ B ) )  e.  V )
8724, 86ifclda 4120 . . . 4  |-  ( ph  ->  if ( N  =  0 ,  [_ N  /  n ]_ A ,  if ( N  =  S ,  [_ N  /  n ]_ C ,  if ( S  <  N ,  [_ N  /  n ]_ D ,  [_ N  /  n ]_ B ) ) )  e.  V
)
8820, 87eqeltrd 2701 . . 3  |-  ( ph  ->  [_ N  /  n ]_ if ( n  =  0 ,  A ,  if ( n  =  S ,  C ,  if ( S  <  n ,  D ,  B ) ) )  e.  V
)
89 fvmptnn04if.g . . . 4  |-  G  =  ( n  e.  NN0  |->  if ( n  =  0 ,  A ,  if ( n  =  S ,  C ,  if ( S  <  n ,  D ,  B ) ) ) )
9089fvmpts 6285 . . 3  |-  ( ( N  e.  NN0  /\  [_ N  /  n ]_ if ( n  =  0 ,  A ,  if ( n  =  S ,  C ,  if ( S  <  n ,  D ,  B ) ) )  e.  V
)  ->  ( G `  N )  =  [_ N  /  n ]_ if ( n  =  0 ,  A ,  if ( n  =  S ,  C ,  if ( S  <  n ,  D ,  B ) ) ) )
911, 88, 90syl2anc 693 . 2  |-  ( ph  ->  ( G `  N
)  =  [_ N  /  n ]_ if ( n  =  0 ,  A ,  if ( n  =  S ,  C ,  if ( S  <  n ,  D ,  B ) ) ) )
9221eqcomd 2628 . . 3  |-  ( (
ph  /\  N  = 
0 )  ->  [_ N  /  n ]_ A  =  Y )
9334, 82ifeqda 4121 . . . 4  |-  ( ( ( ph  /\  -.  N  =  0 )  /\  -.  N  =  S )  ->  if ( S  <  N ,  [_ N  /  n ]_ D ,  [_ N  /  n ]_ B )  =  Y )
9427, 93ifeqda 4121 . . 3  |-  ( (
ph  /\  -.  N  =  0 )  ->  if ( N  =  S ,  [_ N  /  n ]_ C ,  if ( S  <  N ,  [_ N  /  n ]_ D ,  [_ N  /  n ]_ B ) )  =  Y )
9592, 94ifeqda 4121 . 2  |-  ( ph  ->  if ( N  =  0 ,  [_ N  /  n ]_ A ,  if ( N  =  S ,  [_ N  /  n ]_ C ,  if ( S  <  N ,  [_ N  /  n ]_ D ,  [_ N  /  n ]_ B ) ) )  =  Y )
9691, 20, 953eqtrd 2660 1  |-  ( ph  ->  ( G `  N
)  =  Y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   [.wsbc 3435   [_csb 3533   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888   RRcr 9935   0cc0 9936    < clt 10074    <_ cle 10075   NNcn 11020   NN0cn0 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293
This theorem is referenced by:  fvmptnn04ifa  20655  fvmptnn04ifb  20656  fvmptnn04ifc  20657  fvmptnn04ifd  20658
  Copyright terms: Public domain W3C validator