MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsums Structured version   Visualization version   Unicode version

Theorem telgsums 18390
Description: Telescoping finitely supported group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.)
Hypotheses
Ref Expression
telgsums.b  |-  B  =  ( Base `  G
)
telgsums.g  |-  ( ph  ->  G  e.  Abel )
telgsums.m  |-  .-  =  ( -g `  G )
telgsums.0  |-  .0.  =  ( 0g `  G )
telgsums.f  |-  ( ph  ->  A. k  e.  NN0  C  e.  B )
telgsums.s  |-  ( ph  ->  S  e.  NN0 )
telgsums.u  |-  ( ph  ->  A. k  e.  NN0  ( S  <  k  ->  C  =  .0.  )
)
Assertion
Ref Expression
telgsums  |-  ( ph  ->  ( G  gsumg  ( i  e.  NN0  |->  ( [_ i  /  k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  = 
[_ 0  /  k ]_ C )
Distinct variable groups:    B, i,
k    C, i    i, G    S, i, k    .0. , i,
k    ph, i    .- , i
Allowed substitution hints:    ph( k)    C( k)    G( k)    .- ( k)

Proof of Theorem telgsums
StepHypRef Expression
1 telgsums.b . . 3  |-  B  =  ( Base `  G
)
2 telgsums.0 . . 3  |-  .0.  =  ( 0g `  G )
3 telgsums.g . . . 4  |-  ( ph  ->  G  e.  Abel )
4 ablcmn 18199 . . . 4  |-  ( G  e.  Abel  ->  G  e. CMnd
)
53, 4syl 17 . . 3  |-  ( ph  ->  G  e. CMnd )
6 ablgrp 18198 . . . . . . 7  |-  ( G  e.  Abel  ->  G  e. 
Grp )
73, 6syl 17 . . . . . 6  |-  ( ph  ->  G  e.  Grp )
87adantr 481 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  G  e.  Grp )
9 simpr 477 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  NN0 )
10 telgsums.f . . . . . . 7  |-  ( ph  ->  A. k  e.  NN0  C  e.  B )
1110adantr 481 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  A. k  e.  NN0  C  e.  B
)
12 rspcsbela 4006 . . . . . 6  |-  ( ( i  e.  NN0  /\  A. k  e.  NN0  C  e.  B )  ->  [_ i  /  k ]_ C  e.  B )
139, 11, 12syl2anc 693 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  [_ i  / 
k ]_ C  e.  B
)
14 peano2nn0 11333 . . . . . 6  |-  ( i  e.  NN0  ->  ( i  +  1 )  e. 
NN0 )
15 rspcsbela 4006 . . . . . 6  |-  ( ( ( i  +  1 )  e.  NN0  /\  A. k  e.  NN0  C  e.  B )  ->  [_ (
i  +  1 )  /  k ]_ C  e.  B )
1614, 10, 15syl2anr 495 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  [_ ( i  +  1 )  / 
k ]_ C  e.  B
)
17 telgsums.m . . . . . 6  |-  .-  =  ( -g `  G )
181, 17grpsubcl 17495 . . . . 5  |-  ( ( G  e.  Grp  /\  [_ i  /  k ]_ C  e.  B  /\  [_ ( i  +  1 )  /  k ]_ C  e.  B )  ->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
)  e.  B )
198, 13, 16, 18syl3anc 1326 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( [_ i  /  k ]_ C  .- 
[_ ( i  +  1 )  /  k ]_ C )  e.  B
)
2019ralrimiva 2966 . . 3  |-  ( ph  ->  A. i  e.  NN0  ( [_ i  /  k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
)  e.  B )
21 telgsums.s . . 3  |-  ( ph  ->  S  e.  NN0 )
22 telgsums.u . . . . . . . . 9  |-  ( ph  ->  A. k  e.  NN0  ( S  <  k  ->  C  =  .0.  )
)
23 rspsbca 3519 . . . . . . . . . . 11  |-  ( ( i  e.  NN0  /\  A. k  e.  NN0  ( S  <  k  ->  C  =  .0.  ) )  ->  [. i  /  k ]. ( S  <  k  ->  C  =  .0.  )
)
24 vex 3203 . . . . . . . . . . . 12  |-  i  e. 
_V
25 sbcimg 3477 . . . . . . . . . . . . 13  |-  ( i  e.  _V  ->  ( [. i  /  k ]. ( S  <  k  ->  C  =  .0.  )  <->  (
[. i  /  k ]. S  <  k  ->  [. i  /  k ]. C  =  .0.  ) ) )
26 sbcbr2g 4710 . . . . . . . . . . . . . . 15  |-  ( i  e.  _V  ->  ( [. i  /  k ]. S  <  k  <->  S  <  [_ i  /  k ]_ k ) )
27 csbvarg 4003 . . . . . . . . . . . . . . . 16  |-  ( i  e.  _V  ->  [_ i  /  k ]_ k  =  i )
2827breq2d 4665 . . . . . . . . . . . . . . 15  |-  ( i  e.  _V  ->  ( S  <  [_ i  /  k ]_ k  <->  S  <  i ) )
2926, 28bitrd 268 . . . . . . . . . . . . . 14  |-  ( i  e.  _V  ->  ( [. i  /  k ]. S  <  k  <->  S  <  i ) )
30 sbceq1g 3988 . . . . . . . . . . . . . 14  |-  ( i  e.  _V  ->  ( [. i  /  k ]. C  =  .0.  <->  [_ i  /  k ]_ C  =  .0.  ) )
3129, 30imbi12d 334 . . . . . . . . . . . . 13  |-  ( i  e.  _V  ->  (
( [. i  /  k ]. S  <  k  ->  [. i  /  k ]. C  =  .0.  ) 
<->  ( S  <  i  ->  [_ i  /  k ]_ C  =  .0.  ) ) )
3225, 31bitrd 268 . . . . . . . . . . . 12  |-  ( i  e.  _V  ->  ( [. i  /  k ]. ( S  <  k  ->  C  =  .0.  )  <->  ( S  <  i  ->  [_ i  /  k ]_ C  =  .0.  ) ) )
3324, 32ax-mp 5 . . . . . . . . . . 11  |-  ( [. i  /  k ]. ( S  <  k  ->  C  =  .0.  )  <->  ( S  <  i  ->  [_ i  / 
k ]_ C  =  .0.  ) )
3423, 33sylib 208 . . . . . . . . . 10  |-  ( ( i  e.  NN0  /\  A. k  e.  NN0  ( S  <  k  ->  C  =  .0.  ) )  -> 
( S  <  i  ->  [_ i  /  k ]_ C  =  .0.  ) )
3534expcom 451 . . . . . . . . 9  |-  ( A. k  e.  NN0  ( S  <  k  ->  C  =  .0.  )  ->  (
i  e.  NN0  ->  ( S  <  i  ->  [_ i  /  k ]_ C  =  .0.  ) ) )
3622, 35syl 17 . . . . . . . 8  |-  ( ph  ->  ( i  e.  NN0  ->  ( S  <  i  ->  [_ i  /  k ]_ C  =  .0.  ) ) )
3736imp31 448 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  S  <  i )  ->  [_ i  /  k ]_ C  =  .0.  )
3821nn0red 11352 . . . . . . . . . . . . 13  |-  ( ph  ->  S  e.  RR )
3938adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  NN0 )  ->  S  e.  RR )
4039adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  S  <  i )  ->  S  e.  RR )
41 nn0re 11301 . . . . . . . . . . . 12  |-  ( i  e.  NN0  ->  i  e.  RR )
4241ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  S  <  i )  ->  i  e.  RR )
4314ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  S  <  i )  ->  (
i  +  1 )  e.  NN0 )
4443nn0red 11352 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  S  <  i )  ->  (
i  +  1 )  e.  RR )
45 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  S  <  i )  ->  S  <  i )
4642ltp1d 10954 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  S  <  i )  ->  i  <  ( i  +  1 ) )
4740, 42, 44, 45, 46lttrd 10198 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  S  <  i )  ->  S  <  ( i  +  1 ) )
4847ex 450 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( S  <  i  ->  S  <  ( i  +  1 ) ) )
49 rspsbca 3519 . . . . . . . . . . 11  |-  ( ( ( i  +  1 )  e.  NN0  /\  A. k  e.  NN0  ( S  <  k  ->  C  =  .0.  ) )  ->  [. ( i  +  1 )  /  k ]. ( S  <  k  ->  C  =  .0.  )
)
50 ovex 6678 . . . . . . . . . . . 12  |-  ( i  +  1 )  e. 
_V
51 sbcimg 3477 . . . . . . . . . . . . 13  |-  ( ( i  +  1 )  e.  _V  ->  ( [. ( i  +  1 )  /  k ]. ( S  <  k  ->  C  =  .0.  )  <->  (
[. ( i  +  1 )  /  k ]. S  <  k  ->  [. ( i  +  1 )  /  k ]. C  =  .0.  )
) )
52 sbcbr2g 4710 . . . . . . . . . . . . . . 15  |-  ( ( i  +  1 )  e.  _V  ->  ( [. ( i  +  1 )  /  k ]. S  <  k  <->  S  <  [_ ( i  +  1 )  /  k ]_ k ) )
53 csbvarg 4003 . . . . . . . . . . . . . . . 16  |-  ( ( i  +  1 )  e.  _V  ->  [_ (
i  +  1 )  /  k ]_ k  =  ( i  +  1 ) )
5453breq2d 4665 . . . . . . . . . . . . . . 15  |-  ( ( i  +  1 )  e.  _V  ->  ( S  <  [_ ( i  +  1 )  /  k ]_ k  <->  S  <  ( i  +  1 ) ) )
5552, 54bitrd 268 . . . . . . . . . . . . . 14  |-  ( ( i  +  1 )  e.  _V  ->  ( [. ( i  +  1 )  /  k ]. S  <  k  <->  S  <  ( i  +  1 ) ) )
56 sbceq1g 3988 . . . . . . . . . . . . . 14  |-  ( ( i  +  1 )  e.  _V  ->  ( [. ( i  +  1 )  /  k ]. C  =  .0.  <->  [_ ( i  +  1 )  / 
k ]_ C  =  .0.  ) )
5755, 56imbi12d 334 . . . . . . . . . . . . 13  |-  ( ( i  +  1 )  e.  _V  ->  (
( [. ( i  +  1 )  /  k ]. S  <  k  ->  [. ( i  +  1 )  /  k ]. C  =  .0.  )  <->  ( S  <  ( i  +  1 )  ->  [_ ( i  +  1 )  /  k ]_ C  =  .0.  )
) )
5851, 57bitrd 268 . . . . . . . . . . . 12  |-  ( ( i  +  1 )  e.  _V  ->  ( [. ( i  +  1 )  /  k ]. ( S  <  k  ->  C  =  .0.  )  <->  ( S  <  ( i  +  1 )  ->  [_ ( i  +  1 )  /  k ]_ C  =  .0.  )
) )
5950, 58ax-mp 5 . . . . . . . . . . 11  |-  ( [. ( i  +  1 )  /  k ]. ( S  <  k  ->  C  =  .0.  )  <->  ( S  <  ( i  +  1 )  ->  [_ ( i  +  1 )  /  k ]_ C  =  .0.  )
)
6049, 59sylib 208 . . . . . . . . . 10  |-  ( ( ( i  +  1 )  e.  NN0  /\  A. k  e.  NN0  ( S  <  k  ->  C  =  .0.  ) )  -> 
( S  <  (
i  +  1 )  ->  [_ ( i  +  1 )  /  k ]_ C  =  .0.  ) )
6114, 22, 60syl2anr 495 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( S  <  ( i  +  1 )  ->  [_ ( i  +  1 )  / 
k ]_ C  =  .0.  ) )
6248, 61syld 47 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( S  <  i  ->  [_ ( i  +  1 )  / 
k ]_ C  =  .0.  ) )
6362imp 445 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  S  <  i )  ->  [_ (
i  +  1 )  /  k ]_ C  =  .0.  )
6437, 63oveq12d 6668 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  S  <  i )  ->  ( [_ i  /  k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
)  =  (  .0.  .-  .0.  ) )
658adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  S  <  i )  ->  G  e.  Grp )
661, 2grpidcl 17450 . . . . . . . 8  |-  ( G  e.  Grp  ->  .0.  e.  B )
6765, 66jccir 562 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  S  <  i )  ->  ( G  e.  Grp  /\  .0.  e.  B ) )
681, 2, 17grpsubid 17499 . . . . . . 7  |-  ( ( G  e.  Grp  /\  .0.  e.  B )  -> 
(  .0.  .-  .0.  )  =  .0.  )
6967, 68syl 17 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  S  <  i )  ->  (  .0.  .-  .0.  )  =  .0.  )
7064, 69eqtrd 2656 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  S  <  i )  ->  ( [_ i  /  k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
)  =  .0.  )
7170ex 450 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( S  <  i  ->  ( [_ i  /  k ]_ C  .- 
[_ ( i  +  1 )  /  k ]_ C )  =  .0.  ) )
7271ralrimiva 2966 . . 3  |-  ( ph  ->  A. i  e.  NN0  ( S  <  i  -> 
( [_ i  /  k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
)  =  .0.  )
)
731, 2, 5, 20, 21, 72gsummptnn0fzv 18383 . 2  |-  ( ph  ->  ( G  gsumg  ( i  e.  NN0  |->  ( [_ i  /  k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( G  gsumg  ( i  e.  ( 0 ... S ) 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) ) )
74 fzssuz 12382 . . . . . 6  |-  ( 0 ... ( S  + 
1 ) )  C_  ( ZZ>= `  0 )
7574a1i 11 . . . . 5  |-  ( ph  ->  ( 0 ... ( S  +  1 ) )  C_  ( ZZ>= ` 
0 ) )
76 nn0uz 11722 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
7775, 76syl6sseqr 3652 . . . 4  |-  ( ph  ->  ( 0 ... ( S  +  1 ) )  C_  NN0 )
78 ssralv 3666 . . . 4  |-  ( ( 0 ... ( S  +  1 ) ) 
C_  NN0  ->  ( A. k  e.  NN0  C  e.  B  ->  A. k  e.  ( 0 ... ( S  +  1 ) ) C  e.  B
) )
7977, 10, 78sylc 65 . . 3  |-  ( ph  ->  A. k  e.  ( 0 ... ( S  +  1 ) ) C  e.  B )
801, 3, 17, 21, 79telgsumfz0s 18388 . 2  |-  ( ph  ->  ( G  gsumg  ( i  e.  ( 0 ... S ) 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( [_ 0  / 
k ]_ C  .-  [_ ( S  +  1 )  /  k ]_ C
) )
81 peano2nn0 11333 . . . . . 6  |-  ( S  e.  NN0  ->  ( S  +  1 )  e. 
NN0 )
8221, 81syl 17 . . . . 5  |-  ( ph  ->  ( S  +  1 )  e.  NN0 )
8338ltp1d 10954 . . . . 5  |-  ( ph  ->  S  <  ( S  +  1 ) )
84 rspsbca 3519 . . . . . . 7  |-  ( ( ( S  +  1 )  e.  NN0  /\  A. k  e.  NN0  ( S  <  k  ->  C  =  .0.  ) )  ->  [. ( S  +  1 )  /  k ]. ( S  <  k  ->  C  =  .0.  )
)
85 ovex 6678 . . . . . . . 8  |-  ( S  +  1 )  e. 
_V
86 sbcimg 3477 . . . . . . . . 9  |-  ( ( S  +  1 )  e.  _V  ->  ( [. ( S  +  1 )  /  k ]. ( S  <  k  ->  C  =  .0.  )  <->  (
[. ( S  + 
1 )  /  k ]. S  <  k  ->  [. ( S  +  1 )  /  k ]. C  =  .0.  )
) )
87 sbcbr2g 4710 . . . . . . . . . . 11  |-  ( ( S  +  1 )  e.  _V  ->  ( [. ( S  +  1 )  /  k ]. S  <  k  <->  S  <  [_ ( S  +  1 )  /  k ]_ k ) )
88 csbvarg 4003 . . . . . . . . . . . 12  |-  ( ( S  +  1 )  e.  _V  ->  [_ ( S  +  1 )  /  k ]_ k  =  ( S  + 
1 ) )
8988breq2d 4665 . . . . . . . . . . 11  |-  ( ( S  +  1 )  e.  _V  ->  ( S  <  [_ ( S  + 
1 )  /  k ]_ k  <->  S  <  ( S  +  1 ) ) )
9087, 89bitrd 268 . . . . . . . . . 10  |-  ( ( S  +  1 )  e.  _V  ->  ( [. ( S  +  1 )  /  k ]. S  <  k  <->  S  <  ( S  +  1 ) ) )
91 sbceq1g 3988 . . . . . . . . . 10  |-  ( ( S  +  1 )  e.  _V  ->  ( [. ( S  +  1 )  /  k ]. C  =  .0.  <->  [_ ( S  +  1 )  / 
k ]_ C  =  .0.  ) )
9290, 91imbi12d 334 . . . . . . . . 9  |-  ( ( S  +  1 )  e.  _V  ->  (
( [. ( S  + 
1 )  /  k ]. S  <  k  ->  [. ( S  +  1 )  /  k ]. C  =  .0.  )  <->  ( S  <  ( S  +  1 )  ->  [_ ( S  +  1 )  /  k ]_ C  =  .0.  )
) )
9386, 92bitrd 268 . . . . . . . 8  |-  ( ( S  +  1 )  e.  _V  ->  ( [. ( S  +  1 )  /  k ]. ( S  <  k  ->  C  =  .0.  )  <->  ( S  <  ( S  +  1 )  ->  [_ ( S  +  1 )  /  k ]_ C  =  .0.  )
) )
9485, 93ax-mp 5 . . . . . . 7  |-  ( [. ( S  +  1
)  /  k ]. ( S  <  k  ->  C  =  .0.  )  <->  ( S  <  ( S  +  1 )  ->  [_ ( S  +  1 )  /  k ]_ C  =  .0.  )
)
9584, 94sylib 208 . . . . . 6  |-  ( ( ( S  +  1 )  e.  NN0  /\  A. k  e.  NN0  ( S  <  k  ->  C  =  .0.  ) )  -> 
( S  <  ( S  +  1 )  ->  [_ ( S  + 
1 )  /  k ]_ C  =  .0.  ) )
9695ex 450 . . . . 5  |-  ( ( S  +  1 )  e.  NN0  ->  ( A. k  e.  NN0  ( S  <  k  ->  C  =  .0.  )  ->  ( S  <  ( S  + 
1 )  ->  [_ ( S  +  1 )  /  k ]_ C  =  .0.  ) ) )
9782, 22, 83, 96syl3c 66 . . . 4  |-  ( ph  ->  [_ ( S  + 
1 )  /  k ]_ C  =  .0.  )
9897oveq2d 6666 . . 3  |-  ( ph  ->  ( [_ 0  / 
k ]_ C  .-  [_ ( S  +  1 )  /  k ]_ C
)  =  ( [_
0  /  k ]_ C  .-  .0.  ) )
99 0nn0 11307 . . . . . 6  |-  0  e.  NN0
10099a1i 11 . . . . 5  |-  ( ph  ->  0  e.  NN0 )
101 rspcsbela 4006 . . . . 5  |-  ( ( 0  e.  NN0  /\  A. k  e.  NN0  C  e.  B )  ->  [_ 0  /  k ]_ C  e.  B )
102100, 10, 101syl2anc 693 . . . 4  |-  ( ph  ->  [_ 0  /  k ]_ C  e.  B
)
1031, 2, 17grpsubid1 17500 . . . 4  |-  ( ( G  e.  Grp  /\  [_ 0  /  k ]_ C  e.  B )  ->  ( [_ 0  / 
k ]_ C  .-  .0.  )  =  [_ 0  /  k ]_ C
)
1047, 102, 103syl2anc 693 . . 3  |-  ( ph  ->  ( [_ 0  / 
k ]_ C  .-  .0.  )  =  [_ 0  /  k ]_ C
)
10598, 104eqtrd 2656 . 2  |-  ( ph  ->  ( [_ 0  / 
k ]_ C  .-  [_ ( S  +  1 )  /  k ]_ C
)  =  [_ 0  /  k ]_ C
)
10673, 80, 1053eqtrd 2660 1  |-  ( ph  ->  ( G  gsumg  ( i  e.  NN0  |->  ( [_ i  /  k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  = 
[_ 0  /  k ]_ C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   [.wsbc 3435   [_csb 3533    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101   Grpcgrp 17422   -gcsg 17424  CMndccmn 18193   Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-abl 18196
This theorem is referenced by:  telgsum  18391
  Copyright terms: Public domain W3C validator