| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setscom | Structured version Visualization version Unicode version | ||
| Description: Component-setting is commutative when the x-values are different. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| setscom.1 |
|
| setscom.2 |
|
| Ref | Expression |
|---|---|
| setscom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescom 5423 |
. . . . . 6
| |
| 2 | 1 | uneq1i 3763 |
. . . . 5
|
| 3 | 2 | uneq1i 3763 |
. . . 4
|
| 4 | un23 3772 |
. . . 4
| |
| 5 | 3, 4 | eqtri 2644 |
. . 3
|
| 6 | setsval 15888 |
. . . . . . 7
| |
| 7 | 6 | ad2ant2r 783 |
. . . . . 6
|
| 8 | 7 | reseq1d 5395 |
. . . . 5
|
| 9 | resundir 5411 |
. . . . . 6
| |
| 10 | setscom.1 |
. . . . . . . . . 10
| |
| 11 | elex 3212 |
. . . . . . . . . . 11
| |
| 12 | 11 | ad2antrl 764 |
. . . . . . . . . 10
|
| 13 | opelxpi 5148 |
. . . . . . . . . 10
| |
| 14 | 10, 12, 13 | sylancr 695 |
. . . . . . . . 9
|
| 15 | opex 4932 |
. . . . . . . . . 10
| |
| 16 | 15 | relsn 5223 |
. . . . . . . . 9
|
| 17 | 14, 16 | sylibr 224 |
. . . . . . . 8
|
| 18 | dmsnopss 5607 |
. . . . . . . . 9
| |
| 19 | disjsn2 4247 |
. . . . . . . . . . 11
| |
| 20 | 19 | ad2antlr 763 |
. . . . . . . . . 10
|
| 21 | disj2 4024 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | sylib 208 |
. . . . . . . . 9
|
| 23 | 18, 22 | syl5ss 3614 |
. . . . . . . 8
|
| 24 | relssres 5437 |
. . . . . . . 8
| |
| 25 | 17, 23, 24 | syl2anc 693 |
. . . . . . 7
|
| 26 | 25 | uneq2d 3767 |
. . . . . 6
|
| 27 | 9, 26 | syl5eq 2668 |
. . . . 5
|
| 28 | 8, 27 | eqtrd 2656 |
. . . 4
|
| 29 | 28 | uneq1d 3766 |
. . 3
|
| 30 | setsval 15888 |
. . . . . . 7
| |
| 31 | 30 | reseq1d 5395 |
. . . . . 6
|
| 32 | 31 | ad2ant2rl 785 |
. . . . 5
|
| 33 | resundir 5411 |
. . . . . 6
| |
| 34 | setscom.2 |
. . . . . . . . . 10
| |
| 35 | elex 3212 |
. . . . . . . . . . 11
| |
| 36 | 35 | ad2antll 765 |
. . . . . . . . . 10
|
| 37 | opelxpi 5148 |
. . . . . . . . . 10
| |
| 38 | 34, 36, 37 | sylancr 695 |
. . . . . . . . 9
|
| 39 | opex 4932 |
. . . . . . . . . 10
| |
| 40 | 39 | relsn 5223 |
. . . . . . . . 9
|
| 41 | 38, 40 | sylibr 224 |
. . . . . . . 8
|
| 42 | dmsnopss 5607 |
. . . . . . . . 9
| |
| 43 | ssv 3625 |
. . . . . . . . . . 11
| |
| 44 | ssv 3625 |
. . . . . . . . . . 11
| |
| 45 | ssconb 3743 |
. . . . . . . . . . 11
| |
| 46 | 43, 44, 45 | mp2an 708 |
. . . . . . . . . 10
|
| 47 | 22, 46 | sylib 208 |
. . . . . . . . 9
|
| 48 | 42, 47 | syl5ss 3614 |
. . . . . . . 8
|
| 49 | relssres 5437 |
. . . . . . . 8
| |
| 50 | 41, 48, 49 | syl2anc 693 |
. . . . . . 7
|
| 51 | 50 | uneq2d 3767 |
. . . . . 6
|
| 52 | 33, 51 | syl5eq 2668 |
. . . . 5
|
| 53 | 32, 52 | eqtrd 2656 |
. . . 4
|
| 54 | 53 | uneq1d 3766 |
. . 3
|
| 55 | 5, 29, 54 | 3eqtr4a 2682 |
. 2
|
| 56 | ovex 6678 |
. . 3
| |
| 57 | simprr 796 |
. . 3
| |
| 58 | setsval 15888 |
. . 3
| |
| 59 | 56, 57, 58 | sylancr 695 |
. 2
|
| 60 | ovex 6678 |
. . 3
| |
| 61 | simprl 794 |
. . 3
| |
| 62 | setsval 15888 |
. . 3
| |
| 63 | 60, 61, 62 | sylancr 695 |
. 2
|
| 64 | 55, 59, 63 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-sets 15864 |
| This theorem is referenced by: rescabs 16493 mgpress 18500 |
| Copyright terms: Public domain | W3C validator |