MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescabs Structured version   Visualization version   Unicode version

Theorem rescabs 16493
Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
rescabs.c  |-  ( ph  ->  C  e.  V )
rescabs.h  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
rescabs.j  |-  ( ph  ->  J  Fn  ( T  X.  T ) )
rescabs.s  |-  ( ph  ->  S  e.  W )
rescabs.t  |-  ( ph  ->  T  C_  S )
Assertion
Ref Expression
rescabs  |-  ( ph  ->  ( ( C  |`cat  H
)  |`cat  J )  =  ( C  |`cat  J ) )

Proof of Theorem rescabs
StepHypRef Expression
1 eqid 2622 . . . 4  |-  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  |`cat  J )  =  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  |`cat  J )
2 ovexd 6680 . . . 4  |-  ( ph  ->  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  e.  _V )
3 rescabs.s . . . . 5  |-  ( ph  ->  S  e.  W )
4 rescabs.t . . . . 5  |-  ( ph  ->  T  C_  S )
53, 4ssexd 4805 . . . 4  |-  ( ph  ->  T  e.  _V )
6 rescabs.j . . . 4  |-  ( ph  ->  J  Fn  ( T  X.  T ) )
71, 2, 5, 6rescval2 16488 . . 3  |-  ( ph  ->  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  |`cat 
J )  =  ( ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
8 simpr 477 . . . . . . 7  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( Base `  ( Cs  S ) )  C_  T )
9 ovexd 6680 . . . . . . 7  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  (
( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  e.  _V )
105adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  T  e.  _V )
11 eqid 2622 . . . . . . . 8  |-  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T )  =  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T )
12 baseid 15919 . . . . . . . . 9  |-  Base  = Slot  ( Base `  ndx )
13 1re 10039 . . . . . . . . . . 11  |-  1  e.  RR
14 1nn 11031 . . . . . . . . . . . 12  |-  1  e.  NN
15 4nn0 11311 . . . . . . . . . . . 12  |-  4  e.  NN0
16 1nn0 11308 . . . . . . . . . . . 12  |-  1  e.  NN0
17 1lt10 11681 . . . . . . . . . . . 12  |-  1  < ; 1
0
1814, 15, 16, 17declti 11546 . . . . . . . . . . 11  |-  1  < ; 1
4
1913, 18ltneii 10150 . . . . . . . . . 10  |-  1  =/= ; 1 4
20 basendx 15923 . . . . . . . . . . 11  |-  ( Base `  ndx )  =  1
21 homndx 16074 . . . . . . . . . . 11  |-  ( Hom  `  ndx )  = ; 1 4
2220, 21neeq12i 2860 . . . . . . . . . 10  |-  ( (
Base `  ndx )  =/=  ( Hom  `  ndx ) 
<->  1  =/= ; 1 4 )
2319, 22mpbir 221 . . . . . . . . 9  |-  ( Base `  ndx )  =/=  ( Hom  `  ndx )
2412, 23setsnid 15915 . . . . . . . 8  |-  ( Base `  ( Cs  S ) )  =  ( Base `  (
( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
2511, 24ressid2 15928 . . . . . . 7  |-  ( ( ( Base `  ( Cs  S ) )  C_  T  /\  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  e.  _V  /\  T  e.  _V )  ->  (
( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T )  =  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
268, 9, 10, 25syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  (
( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T )  =  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
2726oveq1d 6665 . . . . 5  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  (
( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
28 ovex 6678 . . . . . 6  |-  ( Cs  S )  e.  _V
29 xpexg 6960 . . . . . . . . 9  |-  ( ( T  e.  _V  /\  T  e.  _V )  ->  ( T  X.  T
)  e.  _V )
305, 5, 29syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( T  X.  T
)  e.  _V )
31 fnex 6481 . . . . . . . 8  |-  ( ( J  Fn  ( T  X.  T )  /\  ( T  X.  T
)  e.  _V )  ->  J  e.  _V )
326, 30, 31syl2anc 693 . . . . . . 7  |-  ( ph  ->  J  e.  _V )
3332adantr 481 . . . . . 6  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  J  e.  _V )
34 setsabs 15902 . . . . . 6  |-  ( ( ( Cs  S )  e.  _V  /\  J  e.  _V )  ->  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
3528, 33, 34sylancr 695 . . . . 5  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  (
( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
36 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Cs  S )  =  ( Cs  S )
37 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Base `  C )  =  (
Base `  C )
3836, 37ressbas 15930 . . . . . . . . . . . . 13  |-  ( S  e.  W  ->  ( S  i^i  ( Base `  C
) )  =  (
Base `  ( Cs  S
) ) )
393, 38syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  i^i  ( Base `  C ) )  =  ( Base `  ( Cs  S ) ) )
4039sseq1d 3632 . . . . . . . . . . 11  |-  ( ph  ->  ( ( S  i^i  ( Base `  C )
)  C_  T  <->  ( Base `  ( Cs  S ) )  C_  T ) )
4140biimpar 502 . . . . . . . . . 10  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( S  i^i  ( Base `  C
) )  C_  T
)
42 inss2 3834 . . . . . . . . . . 11  |-  ( S  i^i  ( Base `  C
) )  C_  ( Base `  C )
4342a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( S  i^i  ( Base `  C
) )  C_  ( Base `  C ) )
4441, 43ssind 3837 . . . . . . . . 9  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( S  i^i  ( Base `  C
) )  C_  ( T  i^i  ( Base `  C
) ) )
454adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  T  C_  S )
46 ssrin 3838 . . . . . . . . . 10  |-  ( T 
C_  S  ->  ( T  i^i  ( Base `  C
) )  C_  ( S  i^i  ( Base `  C
) ) )
4745, 46syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( T  i^i  ( Base `  C
) )  C_  ( S  i^i  ( Base `  C
) ) )
4844, 47eqssd 3620 . . . . . . . 8  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( S  i^i  ( Base `  C
) )  =  ( T  i^i  ( Base `  C ) ) )
4948oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( Cs  ( S  i^i  ( Base `  C ) ) )  =  ( Cs  ( T  i^i  ( Base `  C ) ) ) )
503adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  S  e.  W )
5137ressinbas 15936 . . . . . . . 8  |-  ( S  e.  W  ->  ( Cs  S )  =  ( Cs  ( S  i^i  ( Base `  C ) ) ) )
5250, 51syl 17 . . . . . . 7  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( Cs  S )  =  ( Cs  ( S  i^i  ( Base `  C ) ) ) )
5337ressinbas 15936 . . . . . . . 8  |-  ( T  e.  _V  ->  ( Cs  T )  =  ( Cs  ( T  i^i  ( Base `  C ) ) ) )
5410, 53syl 17 . . . . . . 7  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( Cs  T )  =  ( Cs  ( T  i^i  ( Base `  C ) ) ) )
5549, 52, 543eqtr4d 2666 . . . . . 6  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( Cs  S )  =  ( Cs  T ) )
5655oveq1d 6665 . . . . 5  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  (
( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
5727, 35, 563eqtrd 2660 . . . 4  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  (
( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
58 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  -.  ( Base `  ( Cs  S ) )  C_  T )
59 ovexd 6680 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  e.  _V )
605adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  T  e.  _V )
6111, 24ressval2 15929 . . . . . . . 8  |-  ( ( -.  ( Base `  ( Cs  S ) )  C_  T  /\  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  e.  _V  /\  T  e.  _V )  ->  (
( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T )  =  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) ) >. )
)
6258, 59, 60, 61syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T )  =  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) ) >. )
)
63 ovexd 6680 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( Cs  S )  e.  _V )
6423necomi 2848 . . . . . . . . 9  |-  ( Hom  `  ndx )  =/=  ( Base `  ndx )
6564a1i 11 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( Hom  `  ndx )  =/=  ( Base `  ndx ) )
66 rescabs.h . . . . . . . . . 10  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
67 xpexg 6960 . . . . . . . . . . 11  |-  ( ( S  e.  W  /\  S  e.  W )  ->  ( S  X.  S
)  e.  _V )
683, 3, 67syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( S  X.  S
)  e.  _V )
69 fnex 6481 . . . . . . . . . 10  |-  ( ( H  Fn  ( S  X.  S )  /\  ( S  X.  S
)  e.  _V )  ->  H  e.  _V )
7066, 68, 69syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  H  e.  _V )
7170adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  H  e.  _V )
72 fvex 6201 . . . . . . . . . 10  |-  ( Base `  ( Cs  S ) )  e. 
_V
7372inex2 4800 . . . . . . . . 9  |-  ( T  i^i  ( Base `  ( Cs  S ) ) )  e.  _V
7473a1i 11 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( T  i^i  ( Base `  ( Cs  S ) ) )  e.  _V )
75 fvex 6201 . . . . . . . . 9  |-  ( Hom  `  ndx )  e.  _V
76 fvex 6201 . . . . . . . . 9  |-  ( Base `  ndx )  e.  _V
7775, 76setscom 15903 . . . . . . . 8  |-  ( ( ( ( Cs  S )  e.  _V  /\  ( Hom  `  ndx )  =/=  ( Base `  ndx ) )  /\  ( H  e.  _V  /\  ( T  i^i  ( Base `  ( Cs  S ) ) )  e.  _V ) )  ->  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) ) >. )  =  ( ( ( Cs  S ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) ) >. ) sSet  <.
( Hom  `  ndx ) ,  H >. ) )
7863, 65, 71, 74, 77syl22anc 1327 . . . . . . 7  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) )
>. )  =  (
( ( Cs  S ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) )
>. ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
79 eqid 2622 . . . . . . . . . . 11  |-  ( ( Cs  S )s  T )  =  ( ( Cs  S )s  T )
80 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  ( Cs  S ) )  =  ( Base `  ( Cs  S ) )
8179, 80ressval2 15929 . . . . . . . . . 10  |-  ( ( -.  ( Base `  ( Cs  S ) )  C_  T  /\  ( Cs  S )  e.  _V  /\  T  e.  _V )  ->  (
( Cs  S )s  T )  =  ( ( Cs  S ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) ) >. )
)
8258, 63, 60, 81syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( Cs  S )s  T )  =  ( ( Cs  S ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) ) >. )
)
833adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  S  e.  W )
844adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  T  C_  S )
85 ressabs 15939 . . . . . . . . . 10  |-  ( ( S  e.  W  /\  T  C_  S )  -> 
( ( Cs  S )s  T )  =  ( Cs  T ) )
8683, 84, 85syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( Cs  S )s  T )  =  ( Cs  T ) )
8782, 86eqtr3d 2658 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( Cs  S ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) )
>. )  =  ( Cs  T ) )
8887oveq1d 6665 . . . . . . 7  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( ( Cs  S ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) )
>. ) sSet  <. ( Hom  `  ndx ) ,  H >. )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
8962, 78, 883eqtrd 2660 . . . . . 6  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
9089oveq1d 6665 . . . . 5  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
91 ovex 6678 . . . . . 6  |-  ( Cs  T )  e.  _V
9232adantr 481 . . . . . 6  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  J  e.  _V )
93 setsabs 15902 . . . . . 6  |-  ( ( ( Cs  T )  e.  _V  /\  J  e.  _V )  ->  ( ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
9491, 92, 93sylancr 695 . . . . 5  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
9590, 94eqtrd 2656 . . . 4  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
9657, 95pm2.61dan 832 . . 3  |-  ( ph  ->  ( ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
977, 96eqtrd 2656 . 2  |-  ( ph  ->  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  |`cat 
J )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
98 eqid 2622 . . . 4  |-  ( C  |`cat 
H )  =  ( C  |`cat  H )
99 rescabs.c . . . 4  |-  ( ph  ->  C  e.  V )
10098, 99, 3, 66rescval2 16488 . . 3  |-  ( ph  ->  ( C  |`cat  H )  =  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
101100oveq1d 6665 . 2  |-  ( ph  ->  ( ( C  |`cat  H
)  |`cat  J )  =  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  |`cat 
J ) )
102 eqid 2622 . . 3  |-  ( C  |`cat 
J )  =  ( C  |`cat  J )
103102, 99, 5, 6rescval2 16488 . 2  |-  ( ph  ->  ( C  |`cat  J )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
10497, 101, 1033eqtr4d 2666 1  |-  ( ph  ->  ( ( C  |`cat  H
)  |`cat  J )  =  ( C  |`cat  J ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    i^i cin 3573    C_ wss 3574   <.cop 4183    X. cxp 5112    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   1c1 9937   4c4 11072  ;cdc 11493   ndxcnx 15854   sSet csts 15855   Basecbs 15857   ↾s cress 15858   Hom chom 15952    |`cat cresc 16468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-hom 15966  df-resc 16471
This theorem is referenced by:  subsubc  16513  fldc  42083  fldcALTV  42101
  Copyright terms: Public domain W3C validator