| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsfun0 | Structured version Visualization version Unicode version | ||
| Description: A structure with
replacement without the empty set is a function if the
original structure without the empty set is a function. This variant of
setsfun 15893 is useful for proofs based on isstruct2 15867 which requires
|
| Ref | Expression |
|---|---|
| setsfun0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 5929 |
. . . . . 6
| |
| 2 | 1 | adantl 482 |
. . . . 5
|
| 3 | 2 | adantr 481 |
. . . 4
|
| 4 | funsng 5937 |
. . . . 5
| |
| 5 | 4 | adantl 482 |
. . . 4
|
| 6 | dmres 5419 |
. . . . . . 7
| |
| 7 | 6 | ineq1i 3810 |
. . . . . 6
|
| 8 | in32 3825 |
. . . . . . 7
| |
| 9 | incom 3805 |
. . . . . . . . 9
| |
| 10 | disjdif 4040 |
. . . . . . . . 9
| |
| 11 | 9, 10 | eqtri 2644 |
. . . . . . . 8
|
| 12 | 11 | ineq1i 3810 |
. . . . . . 7
|
| 13 | 0in 3969 |
. . . . . . 7
| |
| 14 | 8, 12, 13 | 3eqtri 2648 |
. . . . . 6
|
| 15 | 7, 14 | eqtri 2644 |
. . . . 5
|
| 16 | 15 | a1i 11 |
. . . 4
|
| 17 | funun 5932 |
. . . 4
| |
| 18 | 3, 5, 16, 17 | syl21anc 1325 |
. . 3
|
| 19 | difundir 3880 |
. . . . 5
| |
| 20 | resdifcom 5415 |
. . . . . . 7
| |
| 21 | 20 | a1i 11 |
. . . . . 6
|
| 22 | elex 3212 |
. . . . . . . . . 10
| |
| 23 | elex 3212 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | anim12i 590 |
. . . . . . . . 9
|
| 25 | opnz 4942 |
. . . . . . . . 9
| |
| 26 | 24, 25 | sylibr 224 |
. . . . . . . 8
|
| 27 | 26 | adantl 482 |
. . . . . . 7
|
| 28 | disjsn2 4247 |
. . . . . . 7
| |
| 29 | disjdif2 4047 |
. . . . . . 7
| |
| 30 | 27, 28, 29 | 3syl 18 |
. . . . . 6
|
| 31 | 21, 30 | uneq12d 3768 |
. . . . 5
|
| 32 | 19, 31 | syl5eq 2668 |
. . . 4
|
| 33 | 32 | funeqd 5910 |
. . 3
|
| 34 | 18, 33 | mpbird 247 |
. 2
|
| 35 | opex 4932 |
. . . . . . 7
| |
| 36 | 35 | a1i 11 |
. . . . . 6
|
| 37 | setsvalg 15887 |
. . . . . 6
| |
| 38 | 36, 37 | sylan2 491 |
. . . . 5
|
| 39 | 38 | difeq1d 3727 |
. . . 4
|
| 40 | 39 | funeqd 5910 |
. . 3
|
| 41 | 40 | adantr 481 |
. 2
|
| 42 | 34, 41 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-sets 15864 |
| This theorem is referenced by: setsn0fun 15895 setsstruct2 15896 setsstructOLD 15899 |
| Copyright terms: Public domain | W3C validator |