MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsstruct2 Structured version   Visualization version   Unicode version

Theorem setsstruct2 15896
Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
setsstruct2  |-  ( ( ( G Struct  X  /\  E  e.  V  /\  I  e.  NN )  /\  Y  =  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X ) ) ,  if ( I  <_ 
( 2nd `  X
) ,  ( 2nd `  X ) ,  I
) >. )  ->  ( G sSet  <. I ,  E >. ) Struct  Y )

Proof of Theorem setsstruct2
StepHypRef Expression
1 isstruct2 15867 . . . . . . 7  |-  ( G Struct  X 
<->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( G  \  { (/)
} )  /\  dom  G 
C_  ( ... `  X
) ) )
2 elin 3796 . . . . . . . . 9  |-  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  <->  ( X  e.  <_  /\  X  e.  ( NN  X.  NN ) ) )
3 elxp6 7200 . . . . . . . . . . 11  |-  ( X  e.  ( NN  X.  NN )  <->  ( X  = 
<. ( 1st `  X
) ,  ( 2nd `  X ) >.  /\  (
( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN ) ) )
4 eleq1 2689 . . . . . . . . . . . . 13  |-  ( X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >.  ->  ( X  e.  <_  <->  <. ( 1st `  X ) ,  ( 2nd `  X )
>.  e.  <_  ) )
54adantr 481 . . . . . . . . . . . 12  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e.  NN  /\  ( 2nd `  X )  e.  NN ) )  ->  ( X  e.  <_  <->  <. ( 1st `  X ) ,  ( 2nd `  X )
>.  e.  <_  ) )
6 simp3 1063 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  I  e.  NN )
7 simp1l 1085 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  ( 1st `  X
)  e.  NN )
86, 7ifcld 4131 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  if ( I  <_  ( 1st `  X
) ,  I ,  ( 1st `  X
) )  e.  NN )
98nnred 11035 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  if ( I  <_  ( 1st `  X
) ,  I ,  ( 1st `  X
) )  e.  RR )
106nnred 11035 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  I  e.  RR )
11 simp1r 1086 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  ( 2nd `  X
)  e.  NN )
1211, 6ifcld 4131 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  if ( I  <_  ( 2nd `  X
) ,  ( 2nd `  X ) ,  I
)  e.  NN )
1312nnred 11035 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  if ( I  <_  ( 2nd `  X
) ,  ( 2nd `  X ) ,  I
)  e.  RR )
14 nnre 11027 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  X )  e.  NN  ->  ( 1st `  X )  e.  RR )
1514adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  -> 
( 1st `  X
)  e.  RR )
16 nnre 11027 . . . . . . . . . . . . . . . . . . . . 21  |-  ( I  e.  NN  ->  I  e.  RR )
1715, 16anim12i 590 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  I  e.  NN )  ->  ( ( 1st `  X
)  e.  RR  /\  I  e.  RR )
)
18173adant2 1080 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  ( ( 1st `  X )  e.  RR  /\  I  e.  RR ) )
1918ancomd 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  ( I  e.  RR  /\  ( 1st `  X )  e.  RR ) )
20 min1 12020 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  RR  /\  ( 1st `  X )  e.  RR )  ->  if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X ) )  <_  I )
2119, 20syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  if ( I  <_  ( 1st `  X
) ,  I ,  ( 1st `  X
) )  <_  I
)
22 nnre 11027 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2nd `  X )  e.  NN  ->  ( 2nd `  X )  e.  RR )
2322adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  -> 
( 2nd `  X
)  e.  RR )
2423, 16anim12i 590 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  I  e.  NN )  ->  ( ( 2nd `  X
)  e.  RR  /\  I  e.  RR )
)
25243adant2 1080 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  ( ( 2nd `  X )  e.  RR  /\  I  e.  RR ) )
2625ancomd 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  ( I  e.  RR  /\  ( 2nd `  X )  e.  RR ) )
27 max1 12016 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  RR  /\  ( 2nd `  X )  e.  RR )  ->  I  <_  if ( I  <_  ( 2nd `  X
) ,  ( 2nd `  X ) ,  I
) )
2826, 27syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  I  <_  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) )
299, 10, 13, 21, 28letrd 10194 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  if ( I  <_  ( 1st `  X
) ,  I ,  ( 1st `  X
) )  <_  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) )
30 df-br 4654 . . . . . . . . . . . . . . . 16  |-  ( if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X ) )  <_  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X
) ,  I )  <->  <. if ( I  <_ 
( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.  e.  <_  )
3129, 30sylib 208 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  <. if ( I  <_  ( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.  e.  <_  )
328, 12opelxpd 5149 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  <. if ( I  <_  ( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.  e.  ( NN  X.  NN ) )
3331, 32elind 3798 . . . . . . . . . . . . . 14  |-  ( ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  <.
( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  /\  I  e.  NN )  ->  <. if ( I  <_  ( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.  e.  (  <_  i^i  ( NN  X.  NN ) ) )
34333exp 1264 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  -> 
( <. ( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  -> 
( I  e.  NN  -> 
<. if ( I  <_ 
( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.  e.  (  <_  i^i  ( NN  X.  NN ) ) ) ) )
3534adantl 482 . . . . . . . . . . . 12  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e.  NN  /\  ( 2nd `  X )  e.  NN ) )  ->  ( <. ( 1st `  X
) ,  ( 2nd `  X ) >.  e.  <_  -> 
( I  e.  NN  -> 
<. if ( I  <_ 
( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.  e.  (  <_  i^i  ( NN  X.  NN ) ) ) ) )
365, 35sylbid 230 . . . . . . . . . . 11  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e.  NN  /\  ( 2nd `  X )  e.  NN ) )  ->  ( X  e.  <_  ->  (
I  e.  NN  ->  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X ) ) ,  if ( I  <_ 
( 2nd `  X
) ,  ( 2nd `  X ) ,  I
) >.  e.  (  <_  i^i  ( NN  X.  NN ) ) ) ) )
373, 36sylbi 207 . . . . . . . . . 10  |-  ( X  e.  ( NN  X.  NN )  ->  ( X  e.  <_  ->  ( I  e.  NN  ->  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.  e.  (  <_  i^i  ( NN  X.  NN ) ) ) ) )
3837impcom 446 . . . . . . . . 9  |-  ( ( X  e.  <_  /\  X  e.  ( NN  X.  NN ) )  ->  (
I  e.  NN  ->  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X ) ) ,  if ( I  <_ 
( 2nd `  X
) ,  ( 2nd `  X ) ,  I
) >.  e.  (  <_  i^i  ( NN  X.  NN ) ) ) )
392, 38sylbi 207 . . . . . . . 8  |-  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  ->  (
I  e.  NN  ->  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X ) ) ,  if ( I  <_ 
( 2nd `  X
) ,  ( 2nd `  X ) ,  I
) >.  e.  (  <_  i^i  ( NN  X.  NN ) ) ) )
40393ad2ant1 1082 . . . . . . 7  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( G  \  { (/) } )  /\  dom  G  C_  ( ... `  X
) )  ->  (
I  e.  NN  ->  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X ) ) ,  if ( I  <_ 
( 2nd `  X
) ,  ( 2nd `  X ) ,  I
) >.  e.  (  <_  i^i  ( NN  X.  NN ) ) ) )
411, 40sylbi 207 . . . . . 6  |-  ( G Struct  X  ->  ( I  e.  NN  ->  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.  e.  (  <_  i^i  ( NN  X.  NN ) ) ) )
4241imp 445 . . . . 5  |-  ( ( G Struct  X  /\  I  e.  NN )  ->  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.  e.  (  <_  i^i  ( NN  X.  NN ) ) )
43423adant2 1080 . . . 4  |-  ( ( G Struct  X  /\  E  e.  V  /\  I  e.  NN )  ->  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.  e.  (  <_  i^i  ( NN  X.  NN ) ) )
44 structex 15868 . . . . . . 7  |-  ( G Struct  X  ->  G  e.  _V )
45 structn0fun 15869 . . . . . . 7  |-  ( G Struct  X  ->  Fun  ( G  \  { (/) } ) )
4644, 45jca 554 . . . . . 6  |-  ( G Struct  X  ->  ( G  e. 
_V  /\  Fun  ( G 
\  { (/) } ) ) )
47463ad2ant1 1082 . . . . 5  |-  ( ( G Struct  X  /\  E  e.  V  /\  I  e.  NN )  ->  ( G  e.  _V  /\  Fun  ( G  \  { (/) } ) ) )
48 simp3 1063 . . . . 5  |-  ( ( G Struct  X  /\  E  e.  V  /\  I  e.  NN )  ->  I  e.  NN )
49 simp2 1062 . . . . 5  |-  ( ( G Struct  X  /\  E  e.  V  /\  I  e.  NN )  ->  E  e.  V )
50 setsfun0 15894 . . . . 5  |-  ( ( ( G  e.  _V  /\ 
Fun  ( G  \  { (/) } ) )  /\  ( I  e.  NN  /\  E  e.  V ) )  ->  Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } ) )
5147, 48, 49, 50syl12anc 1324 . . . 4  |-  ( ( G Struct  X  /\  E  e.  V  /\  I  e.  NN )  ->  Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } ) )
52443ad2ant1 1082 . . . . . . 7  |-  ( ( G Struct  X  /\  E  e.  V  /\  I  e.  NN )  ->  G  e.  _V )
5352, 49jca 554 . . . . . 6  |-  ( ( G Struct  X  /\  E  e.  V  /\  I  e.  NN )  ->  ( G  e.  _V  /\  E  e.  V ) )
54 setsdm 15892 . . . . . 6  |-  ( ( G  e.  _V  /\  E  e.  V )  ->  dom  ( G sSet  <. I ,  E >. )  =  ( dom  G  u.  { I } ) )
5553, 54syl 17 . . . . 5  |-  ( ( G Struct  X  /\  E  e.  V  /\  I  e.  NN )  ->  dom  ( G sSet  <. I ,  E >. )  =  ( dom  G  u.  {
I } ) )
56 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >.  ->  ( ... `  X )  =  ( ... `  <. ( 1st `  X ) ,  ( 2nd `  X
) >. ) )
57 df-ov 6653 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  X ) ... ( 2nd `  X
) )  =  ( ... `  <. ( 1st `  X ) ,  ( 2nd `  X
) >. )
5856, 57syl6eqr 2674 . . . . . . . . . . . . . . . 16  |-  ( X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >.  ->  ( ... `  X )  =  ( ( 1st `  X
) ... ( 2nd `  X
) ) )
5958sseq2d 3633 . . . . . . . . . . . . . . 15  |-  ( X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >.  ->  ( dom  G  C_  ( ... `  X )  <->  dom  G  C_  ( ( 1st `  X
) ... ( 2nd `  X
) ) ) )
6059adantr 481 . . . . . . . . . . . . . 14  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e.  NN  /\  ( 2nd `  X )  e.  NN ) )  ->  ( dom  G  C_  ( ... `  X )  <->  dom  G  C_  ( ( 1st `  X
) ... ( 2nd `  X
) ) ) )
61 df-3an 1039 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN  /\  I  e.  NN )  <->  ( (
( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  /\  I  e.  NN )
)
62 nnz 11399 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1st `  X )  e.  NN  ->  ( 1st `  X )  e.  ZZ )
63 nnz 11399 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2nd `  X )  e.  NN  ->  ( 2nd `  X )  e.  ZZ )
64 nnz 11399 . . . . . . . . . . . . . . . . . . . . 21  |-  ( I  e.  NN  ->  I  e.  ZZ )
6562, 63, 643anim123i 1247 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN  /\  I  e.  NN )  ->  (
( 1st `  X
)  e.  ZZ  /\  ( 2nd `  X )  e.  ZZ  /\  I  e.  ZZ ) )
66 ssfzunsnext 12386 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( dom  G  C_  (
( 1st `  X
) ... ( 2nd `  X
) )  /\  (
( 1st `  X
)  e.  ZZ  /\  ( 2nd `  X )  e.  ZZ  /\  I  e.  ZZ ) )  -> 
( dom  G  u.  { I } )  C_  ( if ( I  <_ 
( 1st `  X
) ,  I ,  ( 1st `  X
) ) ... if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) ) )
67 df-ov 6653 . . . . . . . . . . . . . . . . . . . . 21  |-  ( if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X ) ) ...
if ( I  <_ 
( 2nd `  X
) ,  ( 2nd `  X ) ,  I
) )  =  ( ... `  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
)
6866, 67syl6sseq 3651 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( dom  G  C_  (
( 1st `  X
) ... ( 2nd `  X
) )  /\  (
( 1st `  X
)  e.  ZZ  /\  ( 2nd `  X )  e.  ZZ  /\  I  e.  ZZ ) )  -> 
( dom  G  u.  { I } )  C_  ( ... `  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) )
6965, 68sylan2 491 . . . . . . . . . . . . . . . . . . 19  |-  ( ( dom  G  C_  (
( 1st `  X
) ... ( 2nd `  X
) )  /\  (
( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN  /\  I  e.  NN ) )  -> 
( dom  G  u.  { I } )  C_  ( ... `  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) )
7069ex 450 . . . . . . . . . . . . . . . . . 18  |-  ( dom 
G  C_  ( ( 1st `  X ) ... ( 2nd `  X
) )  ->  (
( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN  /\  I  e.  NN )  ->  ( dom  G  u.  { I } )  C_  ( ... `  <. if ( I  <_  ( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) ) )
7161, 70syl5bir 233 . . . . . . . . . . . . . . . . 17  |-  ( dom 
G  C_  ( ( 1st `  X ) ... ( 2nd `  X
) )  ->  (
( ( ( 1st `  X )  e.  NN  /\  ( 2nd `  X
)  e.  NN )  /\  I  e.  NN )  ->  ( dom  G  u.  { I } ) 
C_  ( ... `  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X ) ) ,  if ( I  <_ 
( 2nd `  X
) ,  ( 2nd `  X ) ,  I
) >. ) ) )
7271expd 452 . . . . . . . . . . . . . . . 16  |-  ( dom 
G  C_  ( ( 1st `  X ) ... ( 2nd `  X
) )  ->  (
( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  -> 
( I  e.  NN  ->  ( dom  G  u.  { I } )  C_  ( ... `  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) ) ) )
7372com12 32 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  X
)  e.  NN  /\  ( 2nd `  X )  e.  NN )  -> 
( dom  G  C_  (
( 1st `  X
) ... ( 2nd `  X
) )  ->  (
I  e.  NN  ->  ( dom  G  u.  {
I } )  C_  ( ... `  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) ) ) )
7473adantl 482 . . . . . . . . . . . . . 14  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e.  NN  /\  ( 2nd `  X )  e.  NN ) )  ->  ( dom  G  C_  ( ( 1st `  X ) ... ( 2nd `  X
) )  ->  (
I  e.  NN  ->  ( dom  G  u.  {
I } )  C_  ( ... `  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) ) ) )
7560, 74sylbid 230 . . . . . . . . . . . . 13  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e.  NN  /\  ( 2nd `  X )  e.  NN ) )  ->  ( dom  G  C_  ( ... `  X )  ->  (
I  e.  NN  ->  ( dom  G  u.  {
I } )  C_  ( ... `  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) ) ) )
763, 75sylbi 207 . . . . . . . . . . . 12  |-  ( X  e.  ( NN  X.  NN )  ->  ( dom 
G  C_  ( ... `  X )  ->  (
I  e.  NN  ->  ( dom  G  u.  {
I } )  C_  ( ... `  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) ) ) )
7776adantl 482 . . . . . . . . . . 11  |-  ( ( X  e.  <_  /\  X  e.  ( NN  X.  NN ) )  ->  ( dom  G  C_  ( ... `  X )  ->  (
I  e.  NN  ->  ( dom  G  u.  {
I } )  C_  ( ... `  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) ) ) )
782, 77sylbi 207 . . . . . . . . . 10  |-  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  ->  ( dom  G  C_  ( ... `  X )  ->  (
I  e.  NN  ->  ( dom  G  u.  {
I } )  C_  ( ... `  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) ) ) )
7978imp 445 . . . . . . . . 9  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  dom  G 
C_  ( ... `  X
) )  ->  (
I  e.  NN  ->  ( dom  G  u.  {
I } )  C_  ( ... `  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) ) )
80793adant2 1080 . . . . . . . 8  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( G  \  { (/) } )  /\  dom  G  C_  ( ... `  X
) )  ->  (
I  e.  NN  ->  ( dom  G  u.  {
I } )  C_  ( ... `  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) ) )
811, 80sylbi 207 . . . . . . 7  |-  ( G Struct  X  ->  ( I  e.  NN  ->  ( dom  G  u.  { I }
)  C_  ( ... ` 
<. if ( I  <_ 
( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) ) )
8281imp 445 . . . . . 6  |-  ( ( G Struct  X  /\  I  e.  NN )  ->  ( dom  G  u.  { I } )  C_  ( ... `  <. if ( I  <_  ( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) )
83823adant2 1080 . . . . 5  |-  ( ( G Struct  X  /\  E  e.  V  /\  I  e.  NN )  ->  ( dom  G  u.  { I } )  C_  ( ... `  <. if ( I  <_  ( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) )
8455, 83eqsstrd 3639 . . . 4  |-  ( ( G Struct  X  /\  E  e.  V  /\  I  e.  NN )  ->  dom  ( G sSet  <. I ,  E >. )  C_  ( ... `  <. if ( I  <_  ( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) )
85 isstruct2 15867 . . . 4  |-  ( ( G sSet  <. I ,  E >. ) Struct  <. if ( I  <_  ( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.  <->  (
<. if ( I  <_ 
( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } )  /\  dom  ( G sSet  <. I ,  E >. )  C_  ( ... ` 
<. if ( I  <_ 
( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) ) )
8643, 51, 84, 85syl3anbrc 1246 . . 3  |-  ( ( G Struct  X  /\  E  e.  V  /\  I  e.  NN )  ->  ( G sSet  <. I ,  E >. ) Struct  <. if ( I  <_  ( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
)
8786adantr 481 . 2  |-  ( ( ( G Struct  X  /\  E  e.  V  /\  I  e.  NN )  /\  Y  =  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X ) ) ,  if ( I  <_ 
( 2nd `  X
) ,  ( 2nd `  X ) ,  I
) >. )  ->  ( G sSet  <. I ,  E >. ) Struct  <. if ( I  <_  ( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
)
88 breq2 4657 . . 3  |-  ( Y  =  <. if ( I  <_  ( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.  ->  ( ( G sSet  <. I ,  E >. ) Struct  Y  <-> 
( G sSet  <. I ,  E >. ) Struct  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) )
8988adantl 482 . 2  |-  ( ( ( G Struct  X  /\  E  e.  V  /\  I  e.  NN )  /\  Y  =  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X ) ) ,  if ( I  <_ 
( 2nd `  X
) ,  ( 2nd `  X ) ,  I
) >. )  ->  (
( G sSet  <. I ,  E >. ) Struct  Y  <->  ( G sSet  <.
I ,  E >. ) Struct  <. if ( I  <_ 
( 1st `  X
) ,  I ,  ( 1st `  X
) ) ,  if ( I  <_  ( 2nd `  X ) ,  ( 2nd `  X ) ,  I ) >.
) )
9087, 89mpbird 247 1  |-  ( ( ( G Struct  X  /\  E  e.  V  /\  I  e.  NN )  /\  Y  =  <. if ( I  <_  ( 1st `  X ) ,  I ,  ( 1st `  X ) ) ,  if ( I  <_ 
( 2nd `  X
) ,  ( 2nd `  X ) ,  I
) >. )  ->  ( G sSet  <. I ,  E >. ) Struct  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   <.cop 4183   class class class wbr 4653    X. cxp 5112   dom cdm 5114   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   RRcr 9935    <_ cle 10075   NNcn 11020   ZZcz 11377   ...cfz 12326   Struct cstr 15853   sSet csts 15855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-sets 15864
This theorem is referenced by:  setsexstruct2  15897  setsstruct  15898
  Copyright terms: Public domain W3C validator