| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isstruct2 | Structured version Visualization version Unicode version | ||
| Description: The property of being a
structure with components in
|
| Ref | Expression |
|---|---|
| isstruct2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brstruct 15866 |
. . 3
| |
| 2 | brrelex12 5155 |
. . 3
| |
| 3 | 1, 2 | mpan 706 |
. 2
|
| 4 | ssun1 3776 |
. . . . 5
| |
| 5 | undif1 4043 |
. . . . 5
| |
| 6 | 4, 5 | sseqtr4i 3638 |
. . . 4
|
| 7 | simp2 1062 |
. . . . . . 7
| |
| 8 | funfn 5918 |
. . . . . . 7
| |
| 9 | 7, 8 | sylib 208 |
. . . . . 6
|
| 10 | inss2 3834 |
. . . . . . . . . . . 12
| |
| 11 | 10 | sseli 3599 |
. . . . . . . . . . 11
|
| 12 | 1st2nd2 7205 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . 10
|
| 14 | 13 | 3ad2ant1 1082 |
. . . . . . . . 9
|
| 15 | 14 | fveq2d 6195 |
. . . . . . . 8
|
| 16 | df-ov 6653 |
. . . . . . . . 9
| |
| 17 | fzfi 12771 |
. . . . . . . . 9
| |
| 18 | 16, 17 | eqeltrri 2698 |
. . . . . . . 8
|
| 19 | 15, 18 | syl6eqel 2709 |
. . . . . . 7
|
| 20 | difss 3737 |
. . . . . . . . 9
| |
| 21 | dmss 5323 |
. . . . . . . . 9
| |
| 22 | 20, 21 | ax-mp 5 |
. . . . . . . 8
|
| 23 | simp3 1063 |
. . . . . . . 8
| |
| 24 | 22, 23 | syl5ss 3614 |
. . . . . . 7
|
| 25 | ssfi 8180 |
. . . . . . 7
| |
| 26 | 19, 24, 25 | syl2anc 693 |
. . . . . 6
|
| 27 | fnfi 8238 |
. . . . . 6
| |
| 28 | 9, 26, 27 | syl2anc 693 |
. . . . 5
|
| 29 | p0ex 4853 |
. . . . 5
| |
| 30 | unexg 6959 |
. . . . 5
| |
| 31 | 28, 29, 30 | sylancl 694 |
. . . 4
|
| 32 | ssexg 4804 |
. . . 4
| |
| 33 | 6, 31, 32 | sylancr 695 |
. . 3
|
| 34 | elex 3212 |
. . . 4
| |
| 35 | 34 | 3ad2ant1 1082 |
. . 3
|
| 36 | 33, 35 | jca 554 |
. 2
|
| 37 | simpr 477 |
. . . . 5
| |
| 38 | 37 | eleq1d 2686 |
. . . 4
|
| 39 | simpl 473 |
. . . . . 6
| |
| 40 | 39 | difeq1d 3727 |
. . . . 5
|
| 41 | 40 | funeqd 5910 |
. . . 4
|
| 42 | 39 | dmeqd 5326 |
. . . . 5
|
| 43 | 37 | fveq2d 6195 |
. . . . 5
|
| 44 | 42, 43 | sseq12d 3634 |
. . . 4
|
| 45 | 38, 41, 44 | 3anbi123d 1399 |
. . 3
|
| 46 | df-struct 15859 |
. . 3
| |
| 47 | 45, 46 | brabga 4989 |
. 2
|
| 48 | 3, 36, 47 | pm5.21nii 368 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 |
| This theorem is referenced by: structn0fun 15869 isstruct 15870 setsstruct2 15896 |
| Copyright terms: Public domain | W3C validator |