MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isstruct2 Structured version   Visualization version   Unicode version

Theorem isstruct2 15867
Description: The property of being a structure with components in  ( 1st `  X
) ... ( 2nd `  X
). (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
isstruct2  |-  ( F Struct  X 
<->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} )  /\  dom  F 
C_  ( ... `  X
) ) )

Proof of Theorem isstruct2
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brstruct 15866 . . 3  |-  Rel Struct
2 brrelex12 5155 . . 3  |-  ( ( Rel Struct  /\  F Struct  X )  ->  ( F  e.  _V  /\  X  e.  _V )
)
31, 2mpan 706 . 2  |-  ( F Struct  X  ->  ( F  e. 
_V  /\  X  e.  _V ) )
4 ssun1 3776 . . . . 5  |-  F  C_  ( F  u.  { (/) } )
5 undif1 4043 . . . . 5  |-  ( ( F  \  { (/) } )  u.  { (/) } )  =  ( F  u.  { (/) } )
64, 5sseqtr4i 3638 . . . 4  |-  F  C_  ( ( F  \  { (/) } )  u. 
{ (/) } )
7 simp2 1062 . . . . . . 7  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  X
) )  ->  Fun  ( F  \  { (/) } ) )
8 funfn 5918 . . . . . . 7  |-  ( Fun  ( F  \  { (/)
} )  <->  ( F  \  { (/) } )  Fn 
dom  ( F  \  { (/) } ) )
97, 8sylib 208 . . . . . 6  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  X
) )  ->  ( F  \  { (/) } )  Fn  dom  ( F 
\  { (/) } ) )
10 inss2 3834 . . . . . . . . . . . 12  |-  (  <_  i^i  ( NN  X.  NN ) )  C_  ( NN  X.  NN )
1110sseli 3599 . . . . . . . . . . 11  |-  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  ->  X  e.  ( NN  X.  NN ) )
12 1st2nd2 7205 . . . . . . . . . . 11  |-  ( X  e.  ( NN  X.  NN )  ->  X  = 
<. ( 1st `  X
) ,  ( 2nd `  X ) >. )
1311, 12syl 17 . . . . . . . . . 10  |-  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  ->  X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >. )
14133ad2ant1 1082 . . . . . . . . 9  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  X
) )  ->  X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >. )
1514fveq2d 6195 . . . . . . . 8  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  X
) )  ->  ( ... `  X )  =  ( ... `  <. ( 1st `  X ) ,  ( 2nd `  X
) >. ) )
16 df-ov 6653 . . . . . . . . 9  |-  ( ( 1st `  X ) ... ( 2nd `  X
) )  =  ( ... `  <. ( 1st `  X ) ,  ( 2nd `  X
) >. )
17 fzfi 12771 . . . . . . . . 9  |-  ( ( 1st `  X ) ... ( 2nd `  X
) )  e.  Fin
1816, 17eqeltrri 2698 . . . . . . . 8  |-  ( ... `  <. ( 1st `  X
) ,  ( 2nd `  X ) >. )  e.  Fin
1915, 18syl6eqel 2709 . . . . . . 7  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  X
) )  ->  ( ... `  X )  e. 
Fin )
20 difss 3737 . . . . . . . . 9  |-  ( F 
\  { (/) } ) 
C_  F
21 dmss 5323 . . . . . . . . 9  |-  ( ( F  \  { (/) } )  C_  F  ->  dom  ( F  \  { (/)
} )  C_  dom  F )
2220, 21ax-mp 5 . . . . . . . 8  |-  dom  ( F  \  { (/) } ) 
C_  dom  F
23 simp3 1063 . . . . . . . 8  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  X
) )  ->  dom  F 
C_  ( ... `  X
) )
2422, 23syl5ss 3614 . . . . . . 7  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  X
) )  ->  dom  ( F  \  { (/) } )  C_  ( ... `  X ) )
25 ssfi 8180 . . . . . . 7  |-  ( ( ( ... `  X
)  e.  Fin  /\  dom  ( F  \  { (/)
} )  C_  ( ... `  X ) )  ->  dom  ( F  \  { (/) } )  e. 
Fin )
2619, 24, 25syl2anc 693 . . . . . 6  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  X
) )  ->  dom  ( F  \  { (/) } )  e.  Fin )
27 fnfi 8238 . . . . . 6  |-  ( ( ( F  \  { (/)
} )  Fn  dom  ( F  \  { (/) } )  /\  dom  ( F  \  { (/) } )  e.  Fin )  -> 
( F  \  { (/)
} )  e.  Fin )
289, 26, 27syl2anc 693 . . . . 5  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  X
) )  ->  ( F  \  { (/) } )  e.  Fin )
29 p0ex 4853 . . . . 5  |-  { (/) }  e.  _V
30 unexg 6959 . . . . 5  |-  ( ( ( F  \  { (/)
} )  e.  Fin  /\ 
{ (/) }  e.  _V )  ->  ( ( F 
\  { (/) } )  u.  { (/) } )  e.  _V )
3128, 29, 30sylancl 694 . . . 4  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  X
) )  ->  (
( F  \  { (/)
} )  u.  { (/)
} )  e.  _V )
32 ssexg 4804 . . . 4  |-  ( ( F  C_  ( ( F  \  { (/) } )  u.  { (/) } )  /\  ( ( F 
\  { (/) } )  u.  { (/) } )  e.  _V )  ->  F  e.  _V )
336, 31, 32sylancr 695 . . 3  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  X
) )  ->  F  e.  _V )
34 elex 3212 . . . 4  |-  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  ->  X  e.  _V )
35343ad2ant1 1082 . . 3  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  X
) )  ->  X  e.  _V )
3633, 35jca 554 . 2  |-  ( ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  X
) )  ->  ( F  e.  _V  /\  X  e.  _V ) )
37 simpr 477 . . . . 5  |-  ( ( f  =  F  /\  x  =  X )  ->  x  =  X )
3837eleq1d 2686 . . . 4  |-  ( ( f  =  F  /\  x  =  X )  ->  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  <->  X  e.  (  <_  i^i  ( NN  X.  NN ) ) ) )
39 simpl 473 . . . . . 6  |-  ( ( f  =  F  /\  x  =  X )  ->  f  =  F )
4039difeq1d 3727 . . . . 5  |-  ( ( f  =  F  /\  x  =  X )  ->  ( f  \  { (/)
} )  =  ( F  \  { (/) } ) )
4140funeqd 5910 . . . 4  |-  ( ( f  =  F  /\  x  =  X )  ->  ( Fun  ( f 
\  { (/) } )  <->  Fun  ( F  \  { (/)
} ) ) )
4239dmeqd 5326 . . . . 5  |-  ( ( f  =  F  /\  x  =  X )  ->  dom  f  =  dom  F )
4337fveq2d 6195 . . . . 5  |-  ( ( f  =  F  /\  x  =  X )  ->  ( ... `  x
)  =  ( ... `  X ) )
4442, 43sseq12d 3634 . . . 4  |-  ( ( f  =  F  /\  x  =  X )  ->  ( dom  f  C_  ( ... `  x )  <->  dom  F  C_  ( ... `  X ) ) )
4538, 41, 443anbi123d 1399 . . 3  |-  ( ( f  =  F  /\  x  =  X )  ->  ( ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f 
\  { (/) } )  /\  dom  f  C_  ( ... `  x ) )  <->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F 
\  { (/) } )  /\  dom  F  C_  ( ... `  X ) ) ) )
46 df-struct 15859 . . 3  |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f  \  { (/)
} )  /\  dom  f  C_  ( ... `  x
) ) }
4745, 46brabga 4989 . 2  |-  ( ( F  e.  _V  /\  X  e.  _V )  ->  ( F Struct  X  <->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F 
\  { (/) } )  /\  dom  F  C_  ( ... `  X ) ) ) )
483, 36, 47pm5.21nii 368 1  |-  ( F Struct  X 
<->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} )  /\  dom  F 
C_  ( ... `  X
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   class class class wbr 4653    X. cxp 5112   dom cdm 5114   Rel wrel 5119   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Fincfn 7955    <_ cle 10075   NNcn 11020   ...cfz 12326   Struct cstr 15853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859
This theorem is referenced by:  structn0fun  15869  isstruct  15870  setsstruct2  15896
  Copyright terms: Public domain W3C validator