| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0vs | Structured version Visualization version Unicode version | ||
| Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 27867 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| slmd0vs.v |
|
| slmd0vs.f |
|
| slmd0vs.s |
|
| slmd0vs.o |
|
| slmd0vs.z |
|
| Ref | Expression |
|---|---|
| slmd0vs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . 4
| |
| 2 | slmd0vs.f |
. . . . . 6
| |
| 3 | eqid 2622 |
. . . . . 6
| |
| 4 | slmd0vs.o |
. . . . . 6
| |
| 5 | 2, 3, 4 | slmd0cl 29771 |
. . . . 5
|
| 6 | 5 | adantr 481 |
. . . 4
|
| 7 | simpr 477 |
. . . 4
| |
| 8 | slmd0vs.v |
. . . . 5
| |
| 9 | eqid 2622 |
. . . . 5
| |
| 10 | slmd0vs.s |
. . . . 5
| |
| 11 | slmd0vs.z |
. . . . 5
| |
| 12 | eqid 2622 |
. . . . 5
| |
| 13 | eqid 2622 |
. . . . 5
| |
| 14 | eqid 2622 |
. . . . 5
| |
| 15 | 8, 9, 10, 11, 2, 3, 12, 13, 14, 4 | slmdlema 29756 |
. . . 4
|
| 16 | 1, 6, 6, 7, 7, 15 | syl122anc 1335 |
. . 3
|
| 17 | 16 | simprd 479 |
. 2
|
| 18 | 17 | simp3d 1075 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-riota 6611 df-ov 6653 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-cmn 18195 df-srg 18506 df-slmd 29754 |
| This theorem is referenced by: slmdvs0 29778 gsumvsca2 29783 |
| Copyright terms: Public domain | W3C validator |