Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmd0vs Structured version   Visualization version   Unicode version

Theorem slmd0vs 29777
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 27867 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmd0vs.v  |-  V  =  ( Base `  W
)
slmd0vs.f  |-  F  =  (Scalar `  W )
slmd0vs.s  |-  .x.  =  ( .s `  W )
slmd0vs.o  |-  O  =  ( 0g `  F
)
slmd0vs.z  |-  .0.  =  ( 0g `  W )
Assertion
Ref Expression
slmd0vs  |-  ( ( W  e. SLMod  /\  X  e.  V )  ->  ( O  .x.  X )  =  .0.  )

Proof of Theorem slmd0vs
StepHypRef Expression
1 simpl 473 . . . 4  |-  ( ( W  e. SLMod  /\  X  e.  V )  ->  W  e. SLMod )
2 slmd0vs.f . . . . . 6  |-  F  =  (Scalar `  W )
3 eqid 2622 . . . . . 6  |-  ( Base `  F )  =  (
Base `  F )
4 slmd0vs.o . . . . . 6  |-  O  =  ( 0g `  F
)
52, 3, 4slmd0cl 29771 . . . . 5  |-  ( W  e. SLMod  ->  O  e.  (
Base `  F )
)
65adantr 481 . . . 4  |-  ( ( W  e. SLMod  /\  X  e.  V )  ->  O  e.  ( Base `  F
) )
7 simpr 477 . . . 4  |-  ( ( W  e. SLMod  /\  X  e.  V )  ->  X  e.  V )
8 slmd0vs.v . . . . 5  |-  V  =  ( Base `  W
)
9 eqid 2622 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
10 slmd0vs.s . . . . 5  |-  .x.  =  ( .s `  W )
11 slmd0vs.z . . . . 5  |-  .0.  =  ( 0g `  W )
12 eqid 2622 . . . . 5  |-  ( +g  `  F )  =  ( +g  `  F )
13 eqid 2622 . . . . 5  |-  ( .r
`  F )  =  ( .r `  F
)
14 eqid 2622 . . . . 5  |-  ( 1r
`  F )  =  ( 1r `  F
)
158, 9, 10, 11, 2, 3, 12, 13, 14, 4slmdlema 29756 . . . 4  |-  ( ( W  e. SLMod  /\  ( O  e.  ( Base `  F )  /\  O  e.  ( Base `  F
) )  /\  ( X  e.  V  /\  X  e.  V )
)  ->  ( (
( O  .x.  X
)  e.  V  /\  ( O  .x.  ( X ( +g  `  W
) X ) )  =  ( ( O 
.x.  X ) ( +g  `  W ) ( O  .x.  X
) )  /\  (
( O ( +g  `  F ) O ) 
.x.  X )  =  ( ( O  .x.  X ) ( +g  `  W ) ( O 
.x.  X ) ) )  /\  ( ( ( O ( .r
`  F ) O )  .x.  X )  =  ( O  .x.  ( O  .x.  X ) )  /\  ( ( 1r `  F ) 
.x.  X )  =  X  /\  ( O 
.x.  X )  =  .0.  ) ) )
161, 6, 6, 7, 7, 15syl122anc 1335 . . 3  |-  ( ( W  e. SLMod  /\  X  e.  V )  ->  (
( ( O  .x.  X )  e.  V  /\  ( O  .x.  ( X ( +g  `  W
) X ) )  =  ( ( O 
.x.  X ) ( +g  `  W ) ( O  .x.  X
) )  /\  (
( O ( +g  `  F ) O ) 
.x.  X )  =  ( ( O  .x.  X ) ( +g  `  W ) ( O 
.x.  X ) ) )  /\  ( ( ( O ( .r
`  F ) O )  .x.  X )  =  ( O  .x.  ( O  .x.  X ) )  /\  ( ( 1r `  F ) 
.x.  X )  =  X  /\  ( O 
.x.  X )  =  .0.  ) ) )
1716simprd 479 . 2  |-  ( ( W  e. SLMod  /\  X  e.  V )  ->  (
( ( O ( .r `  F ) O )  .x.  X
)  =  ( O 
.x.  ( O  .x.  X ) )  /\  ( ( 1r `  F )  .x.  X
)  =  X  /\  ( O  .x.  X )  =  .0.  ) )
1817simp3d 1075 1  |-  ( ( W  e. SLMod  /\  X  e.  V )  ->  ( O  .x.  X )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   1rcur 18501  SLModcslmd 29753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cmn 18195  df-srg 18506  df-slmd 29754
This theorem is referenced by:  slmdvs0  29778  gsumvsca2  29783
  Copyright terms: Public domain W3C validator