MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscmp Structured version   Visualization version   Unicode version

Theorem sscmp 21208
Description: A subset of a compact topology (i.e. a coarser topology) is compact. (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypothesis
Ref Expression
sscmp.1  |-  X  = 
U. K
Assertion
Ref Expression
sscmp  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  ->  J  e.  Comp )

Proof of Theorem sscmp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 20718 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
213ad2ant1 1082 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  ->  J  e.  Top )
3 elpwi 4168 . . . 4  |-  ( x  e.  ~P J  ->  x  C_  J )
4 simpl2 1065 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  /\  ( x  C_  J  /\  U. J  =  U. x ) )  ->  K  e.  Comp )
5 simprl 794 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  /\  ( x  C_  J  /\  U. J  =  U. x ) )  ->  x  C_  J
)
6 simpl3 1066 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  /\  ( x  C_  J  /\  U. J  =  U. x ) )  ->  J  C_  K
)
75, 6sstrd 3613 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  /\  ( x  C_  J  /\  U. J  =  U. x ) )  ->  x  C_  K
)
8 simpl1 1064 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  /\  ( x  C_  J  /\  U. J  =  U. x ) )  ->  J  e.  (TopOn `  X ) )
9 toponuni 20719 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
108, 9syl 17 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  /\  ( x  C_  J  /\  U. J  =  U. x ) )  ->  X  =  U. J )
11 simprr 796 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  /\  ( x  C_  J  /\  U. J  =  U. x ) )  ->  U. J  =  U. x )
1210, 11eqtrd 2656 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  /\  ( x  C_  J  /\  U. J  =  U. x ) )  ->  X  =  U. x )
13 sscmp.1 . . . . . . . 8  |-  X  = 
U. K
1413cmpcov 21192 . . . . . . 7  |-  ( ( K  e.  Comp  /\  x  C_  K  /\  X  = 
U. x )  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
)
154, 7, 12, 14syl3anc 1326 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  /\  ( x  C_  J  /\  U. J  =  U. x ) )  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )
1610eqeq1d 2624 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  /\  ( x  C_  J  /\  U. J  =  U. x ) )  ->  ( X  = 
U. y  <->  U. J  = 
U. y ) )
1716rexbidv 3052 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  /\  ( x  C_  J  /\  U. J  =  U. x ) )  ->  ( E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y  <->  E. y  e.  ( ~P x  i^i 
Fin ) U. J  =  U. y ) )
1815, 17mpbid 222 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  /\  ( x  C_  J  /\  U. J  =  U. x ) )  ->  E. y  e.  ( ~P x  i^i  Fin ) U. J  =  U. y )
1918expr 643 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  /\  x  C_  J
)  ->  ( U. J  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. J  =  U. y ) )
203, 19sylan2 491 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  /\  x  e.  ~P J )  ->  ( U. J  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. J  =  U. y ) )
2120ralrimiva 2966 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  ->  A. x  e.  ~P  J ( U. J  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. J  =  U. y ) )
22 eqid 2622 . . 3  |-  U. J  =  U. J
2322iscmp 21191 . 2  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. x  e.  ~P  J ( U. J  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. J  =  U. y ) ) )
242, 21, 23sylanbrc 698 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Comp  /\  J  C_  K
)  ->  J  e.  Comp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   ` cfv 5888   Fincfn 7955   Topctop 20698  TopOnctopon 20715   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-topon 20716  df-cmp 21190
This theorem is referenced by:  kgencmp2  21349  kgen2ss  21358
  Copyright terms: Public domain W3C validator