MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgen2ss Structured version   Visualization version   Unicode version

Theorem kgen2ss 21358
Description: The compact generator preserves the subset (fineness) relationship on topologies. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgen2ss  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  (𝑘Gen `  J )  C_  (𝑘Gen
`  K ) )

Proof of Theorem kgen2ss
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  J  e.  (TopOn `  X ) )
2 elpwi 4168 . . . . . . . . 9  |-  ( k  e.  ~P X  -> 
k  C_  X )
3 resttopon 20965 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  k  C_  X )  ->  ( Jt  k )  e.  (TopOn `  k ) )
41, 2, 3syl2an 494 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  ( Jt  k )  e.  (TopOn `  k ) )
5 simp2 1062 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  K  e.  (TopOn `  X ) )
6 resttopon 20965 . . . . . . . . . . 11  |-  ( ( K  e.  (TopOn `  X )  /\  k  C_  X )  ->  ( Kt  k )  e.  (TopOn `  k ) )
75, 2, 6syl2an 494 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  ( Kt  k )  e.  (TopOn `  k ) )
8 toponuni 20719 . . . . . . . . . 10  |-  ( ( Kt  k )  e.  (TopOn `  k )  ->  k  =  U. ( Kt  k ) )
97, 8syl 17 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  k  =  U. ( Kt  k ) )
109fveq2d 6195 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  (TopOn `  k )  =  (TopOn `  U. ( Kt  k ) ) )
114, 10eleqtrd 2703 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  ( Jt  k )  e.  (TopOn `  U. ( Kt  k ) ) )
12 simpl2 1065 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  K  e.  (TopOn `  X )
)
13 topontop 20718 . . . . . . . . 9  |-  ( K  e.  (TopOn `  X
)  ->  K  e.  Top )
1412, 13syl 17 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  K  e.  Top )
15 simpl3 1066 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  J  C_  K )
16 ssrest 20980 . . . . . . . 8  |-  ( ( K  e.  Top  /\  J  C_  K )  -> 
( Jt  k )  C_  ( Kt  k ) )
1714, 15, 16syl2anc 693 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  ( Jt  k )  C_  ( Kt  k ) )
18 eqid 2622 . . . . . . . . . 10  |-  U. ( Kt  k )  =  U. ( Kt  k )
1918sscmp 21208 . . . . . . . . 9  |-  ( ( ( Jt  k )  e.  (TopOn `  U. ( Kt  k ) )  /\  ( Kt  k )  e.  Comp  /\  ( Jt  k )  C_  ( Kt  k ) )  ->  ( Jt  k )  e.  Comp )
20193com23 1271 . . . . . . . 8  |-  ( ( ( Jt  k )  e.  (TopOn `  U. ( Kt  k ) )  /\  ( Jt  k )  C_  ( Kt  k )  /\  ( Kt  k )  e.  Comp )  ->  ( Jt  k )  e.  Comp )
21203expia 1267 . . . . . . 7  |-  ( ( ( Jt  k )  e.  (TopOn `  U. ( Kt  k ) )  /\  ( Jt  k )  C_  ( Kt  k ) )  -> 
( ( Kt  k )  e.  Comp  ->  ( Jt  k )  e.  Comp )
)
2211, 17, 21syl2anc 693 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  (
( Kt  k )  e. 
Comp  ->  ( Jt  k )  e.  Comp ) )
2317sseld 3602 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  (
( x  i^i  k
)  e.  ( Jt  k )  ->  ( x  i^i  k )  e.  ( Kt  k ) ) )
2422, 23imim12d 81 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  /\  k  e.  ~P X )  ->  (
( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) )  ->  ( ( Kt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Kt  k ) ) ) )
2524ralimdva 2962 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( x  i^i  k
)  e.  ( Jt  k ) )  ->  A. k  e.  ~P  X ( ( Kt  k )  e.  Comp  -> 
( x  i^i  k
)  e.  ( Kt  k ) ) ) )
2625anim2d 589 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( ( x 
C_  X  /\  A. k  e.  ~P  X
( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) ) )  ->  ( x  C_  X  /\  A. k  e.  ~P  X ( ( Kt  k )  e.  Comp  -> 
( x  i^i  k
)  e.  ( Kt  k ) ) ) ) )
27 elkgen 21339 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( x  e.  (𝑘Gen `  J )  <->  ( x  C_  X  /\  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( x  i^i  k
)  e.  ( Jt  k ) ) ) ) )
28273ad2ant1 1082 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( x  e.  (𝑘Gen `  J )  <->  ( x  C_  X  /\  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( x  i^i  k
)  e.  ( Jt  k ) ) ) ) )
29 elkgen 21339 . . . 4  |-  ( K  e.  (TopOn `  X
)  ->  ( x  e.  (𝑘Gen `  K )  <->  ( x  C_  X  /\  A. k  e.  ~P  X ( ( Kt  k )  e.  Comp  -> 
( x  i^i  k
)  e.  ( Kt  k ) ) ) ) )
30293ad2ant2 1083 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( x  e.  (𝑘Gen `  K )  <->  ( x  C_  X  /\  A. k  e.  ~P  X ( ( Kt  k )  e.  Comp  -> 
( x  i^i  k
)  e.  ( Kt  k ) ) ) ) )
3126, 28, 303imtr4d 283 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( x  e.  (𝑘Gen `  J )  ->  x  e.  (𝑘Gen `  K
) ) )
3231ssrdv 3609 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  (𝑘Gen `  J )  C_  (𝑘Gen
`  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698  TopOnctopon 20715   Compccmp 21189  𝑘Genckgen 21336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-kgen 21337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator