MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiuncmp Structured version   Visualization version   Unicode version

Theorem fiuncmp 21207
Description: A finite union of compact sets is compact. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
fiuncmp.1  |-  X  = 
U. J
Assertion
Ref Expression
fiuncmp  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( Jt  U_ x  e.  A  B )  e.  Comp )
Distinct variable groups:    x, A    x, J
Allowed substitution hints:    B( x)    X( x)

Proof of Theorem fiuncmp
Dummy variables  t 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3624 . 2  |-  A  C_  A
2 simp2 1062 . . 3  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  A  e.  Fin )
3 sseq1 3626 . . . . . 6  |-  ( t  =  (/)  ->  ( t 
C_  A  <->  (/)  C_  A
) )
4 iuneq1 4534 . . . . . . . . 9  |-  ( t  =  (/)  ->  U_ x  e.  t  B  =  U_ x  e.  (/)  B )
5 0iun 4577 . . . . . . . . 9  |-  U_ x  e.  (/)  B  =  (/)
64, 5syl6eq 2672 . . . . . . . 8  |-  ( t  =  (/)  ->  U_ x  e.  t  B  =  (/) )
76oveq2d 6666 . . . . . . 7  |-  ( t  =  (/)  ->  ( Jt  U_ x  e.  t  B
)  =  ( Jt  (/) ) )
87eleq1d 2686 . . . . . 6  |-  ( t  =  (/)  ->  ( ( Jt 
U_ x  e.  t  B )  e.  Comp  <->  ( Jt  (/) )  e.  Comp )
)
93, 8imbi12d 334 . . . . 5  |-  ( t  =  (/)  ->  ( ( t  C_  A  ->  ( Jt 
U_ x  e.  t  B )  e.  Comp ) 
<->  ( (/)  C_  A  -> 
( Jt  (/) )  e.  Comp ) ) )
109imbi2d 330 . . . 4  |-  ( t  =  (/)  ->  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( t  C_  A  ->  ( Jt  U_ x  e.  t  B )  e.  Comp ) )  <->  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B
)  e.  Comp )  ->  ( (/)  C_  A  -> 
( Jt  (/) )  e.  Comp ) ) ) )
11 sseq1 3626 . . . . . 6  |-  ( t  =  y  ->  (
t  C_  A  <->  y  C_  A ) )
12 iuneq1 4534 . . . . . . . 8  |-  ( t  =  y  ->  U_ x  e.  t  B  =  U_ x  e.  y  B )
1312oveq2d 6666 . . . . . . 7  |-  ( t  =  y  ->  ( Jt  U_ x  e.  t  B )  =  ( Jt  U_ x  e.  y  B
) )
1413eleq1d 2686 . . . . . 6  |-  ( t  =  y  ->  (
( Jt  U_ x  e.  t  B )  e.  Comp  <->  ( Jt  U_ x  e.  y  B )  e.  Comp )
)
1511, 14imbi12d 334 . . . . 5  |-  ( t  =  y  ->  (
( t  C_  A  ->  ( Jt  U_ x  e.  t  B )  e.  Comp ) 
<->  ( y  C_  A  ->  ( Jt  U_ x  e.  y  B )  e.  Comp ) ) )
1615imbi2d 330 . . . 4  |-  ( t  =  y  ->  (
( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  (
t  C_  A  ->  ( Jt 
U_ x  e.  t  B )  e.  Comp ) )  <->  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B
)  e.  Comp )  ->  ( y  C_  A  ->  ( Jt  U_ x  e.  y  B )  e.  Comp ) ) ) )
17 sseq1 3626 . . . . . 6  |-  ( t  =  ( y  u. 
{ z } )  ->  ( t  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
18 iuneq1 4534 . . . . . . . 8  |-  ( t  =  ( y  u. 
{ z } )  ->  U_ x  e.  t  B  =  U_ x  e.  ( y  u.  {
z } ) B )
1918oveq2d 6666 . . . . . . 7  |-  ( t  =  ( y  u. 
{ z } )  ->  ( Jt  U_ x  e.  t  B )  =  ( Jt  U_ x  e.  ( y  u.  {
z } ) B ) )
2019eleq1d 2686 . . . . . 6  |-  ( t  =  ( y  u. 
{ z } )  ->  ( ( Jt  U_ x  e.  t  B
)  e.  Comp  <->  ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  e.  Comp )
)
2117, 20imbi12d 334 . . . . 5  |-  ( t  =  ( y  u. 
{ z } )  ->  ( ( t 
C_  A  ->  ( Jt  U_ x  e.  t  B )  e.  Comp )  <->  ( ( y  u.  {
z } )  C_  A  ->  ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  e.  Comp )
) )
2221imbi2d 330 . . . 4  |-  ( t  =  ( y  u. 
{ z } )  ->  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( t  C_  A  ->  ( Jt  U_ x  e.  t  B )  e.  Comp ) )  <->  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B
)  e.  Comp )  ->  ( ( y  u. 
{ z } ) 
C_  A  ->  ( Jt  U_ x  e.  ( y  u.  { z } ) B )  e. 
Comp ) ) ) )
23 sseq1 3626 . . . . . 6  |-  ( t  =  A  ->  (
t  C_  A  <->  A  C_  A
) )
24 iuneq1 4534 . . . . . . . 8  |-  ( t  =  A  ->  U_ x  e.  t  B  =  U_ x  e.  A  B
)
2524oveq2d 6666 . . . . . . 7  |-  ( t  =  A  ->  ( Jt  U_ x  e.  t  B )  =  ( Jt  U_ x  e.  A  B
) )
2625eleq1d 2686 . . . . . 6  |-  ( t  =  A  ->  (
( Jt  U_ x  e.  t  B )  e.  Comp  <->  ( Jt  U_ x  e.  A  B
)  e.  Comp )
)
2723, 26imbi12d 334 . . . . 5  |-  ( t  =  A  ->  (
( t  C_  A  ->  ( Jt  U_ x  e.  t  B )  e.  Comp ) 
<->  ( A  C_  A  ->  ( Jt  U_ x  e.  A  B )  e.  Comp ) ) )
2827imbi2d 330 . . . 4  |-  ( t  =  A  ->  (
( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  (
t  C_  A  ->  ( Jt 
U_ x  e.  t  B )  e.  Comp ) )  <->  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B
)  e.  Comp )  ->  ( A  C_  A  ->  ( Jt  U_ x  e.  A  B )  e.  Comp ) ) ) )
29 rest0 20973 . . . . . . 7  |-  ( J  e.  Top  ->  ( Jt  (/) )  =  { (/) } )
30 0cmp 21197 . . . . . . 7  |-  { (/) }  e.  Comp
3129, 30syl6eqel 2709 . . . . . 6  |-  ( J  e.  Top  ->  ( Jt  (/) )  e.  Comp )
32313ad2ant1 1082 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( Jt  (/) )  e. 
Comp )
3332a1d 25 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( (/)  C_  A  ->  ( Jt  (/) )  e.  Comp ) )
34 ssun1 3776 . . . . . . . . 9  |-  y  C_  ( y  u.  {
z } )
35 id 22 . . . . . . . . 9  |-  ( ( y  u.  { z } )  C_  A  ->  ( y  u.  {
z } )  C_  A )
3634, 35syl5ss 3614 . . . . . . . 8  |-  ( ( y  u.  { z } )  C_  A  ->  y  C_  A )
3736imim1i 63 . . . . . . 7  |-  ( ( y  C_  A  ->  ( Jt 
U_ x  e.  y  B )  e.  Comp )  ->  ( ( y  u.  { z } )  C_  A  ->  ( Jt 
U_ x  e.  y  B )  e.  Comp ) )
38 simpl1 1064 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  J  e.  Top )
39 iunxun 4605 . . . . . . . . . . . 12  |-  U_ x  e.  ( y  u.  {
z } ) B  =  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )
40 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  U_ x  e.  y  B )  e.  Comp )
41 cmptop 21198 . . . . . . . . . . . . . 14  |-  ( ( Jt 
U_ x  e.  y  B )  e.  Comp  -> 
( Jt  U_ x  e.  y  B )  e.  Top )
42 restrcl 20961 . . . . . . . . . . . . . . 15  |-  ( ( Jt 
U_ x  e.  y  B )  e.  Top  ->  ( J  e.  _V  /\ 
U_ x  e.  y  B  e.  _V )
)
4342simprd 479 . . . . . . . . . . . . . 14  |-  ( ( Jt 
U_ x  e.  y  B )  e.  Top  ->  U_ x  e.  y  B  e.  _V )
4440, 41, 433syl 18 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U_ x  e.  y  B  e.  _V )
45 nfcv 2764 . . . . . . . . . . . . . . . 16  |-  F/_ t B
46 nfcsb1v 3549 . . . . . . . . . . . . . . . 16  |-  F/_ x [_ t  /  x ]_ B
47 csbeq1a 3542 . . . . . . . . . . . . . . . 16  |-  ( x  =  t  ->  B  =  [_ t  /  x ]_ B )
4845, 46, 47cbviun 4557 . . . . . . . . . . . . . . 15  |-  U_ x  e.  { z } B  =  U_ t  e.  {
z } [_ t  /  x ]_ B
49 vex 3203 . . . . . . . . . . . . . . . 16  |-  z  e. 
_V
50 csbeq1 3536 . . . . . . . . . . . . . . . 16  |-  ( t  =  z  ->  [_ t  /  x ]_ B  = 
[_ z  /  x ]_ B )
5149, 50iunxsn 4603 . . . . . . . . . . . . . . 15  |-  U_ t  e.  { z } [_ t  /  x ]_ B  =  [_ z  /  x ]_ B
5248, 51eqtri 2644 . . . . . . . . . . . . . 14  |-  U_ x  e.  { z } B  =  [_ z  /  x ]_ B
53 ssun2 3777 . . . . . . . . . . . . . . . . . 18  |-  { z }  C_  ( y  u.  { z } )
54 simprl 794 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
y  u.  { z } )  C_  A
)
5553, 54syl5ss 3614 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  { z }  C_  A )
5649snss 4316 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  A  <->  { z }  C_  A )
5755, 56sylibr 224 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  z  e.  A )
58 simpl3 1066 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  A. x  e.  A  ( Jt  B
)  e.  Comp )
59 nfv 1843 . . . . . . . . . . . . . . . . . 18  |-  F/ t ( Jt  B )  e.  Comp
60 nfcv 2764 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x J
61 nfcv 2764 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ xt
6260, 61, 46nfov 6676 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x
( Jt  [_ t  /  x ]_ B )
6362nfel1 2779 . . . . . . . . . . . . . . . . . 18  |-  F/ x
( Jt  [_ t  /  x ]_ B )  e.  Comp
6447oveq2d 6666 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  t  ->  ( Jt  B )  =  ( Jt 
[_ t  /  x ]_ B ) )
6564eleq1d 2686 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  (
( Jt  B )  e.  Comp  <->  ( Jt  [_ t  /  x ]_ B )  e.  Comp ) )
6659, 63, 65cbvral 3167 . . . . . . . . . . . . . . . . 17  |-  ( A. x  e.  A  ( Jt  B )  e.  Comp  <->  A. t  e.  A  ( Jt  [_ t  /  x ]_ B )  e.  Comp )
6758, 66sylib 208 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  A. t  e.  A  ( Jt  [_ t  /  x ]_ B )  e.  Comp )
6850oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  z  ->  ( Jt  [_ t  /  x ]_ B )  =  ( Jt 
[_ z  /  x ]_ B ) )
6968eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( t  =  z  ->  (
( Jt  [_ t  /  x ]_ B )  e.  Comp  <->  ( Jt  [_ z  /  x ]_ B )  e.  Comp ) )
7069rspcv 3305 . . . . . . . . . . . . . . . 16  |-  ( z  e.  A  ->  ( A. t  e.  A  ( Jt  [_ t  /  x ]_ B )  e.  Comp  -> 
( Jt  [_ z  /  x ]_ B )  e.  Comp ) )
7157, 67, 70sylc 65 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  [_ z  /  x ]_ B )  e.  Comp )
72 cmptop 21198 . . . . . . . . . . . . . . 15  |-  ( ( Jt 
[_ z  /  x ]_ B )  e.  Comp  -> 
( Jt  [_ z  /  x ]_ B )  e.  Top )
73 restrcl 20961 . . . . . . . . . . . . . . . 16  |-  ( ( Jt 
[_ z  /  x ]_ B )  e.  Top  ->  ( J  e.  _V  /\ 
[_ z  /  x ]_ B  e.  _V ) )
7473simprd 479 . . . . . . . . . . . . . . 15  |-  ( ( Jt 
[_ z  /  x ]_ B )  e.  Top  ->  [_ z  /  x ]_ B  e.  _V )
7571, 72, 743syl 18 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  [_ z  /  x ]_ B  e. 
_V )
7652, 75syl5eqel 2705 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U_ x  e.  { z } B  e.  _V )
77 unexg 6959 . . . . . . . . . . . . 13  |-  ( (
U_ x  e.  y  B  e.  _V  /\  U_ x  e.  { z } B  e.  _V )  ->  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )  e. 
_V )
7844, 76, 77syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( U_ x  e.  y  B  u.  U_ x  e. 
{ z } B
)  e.  _V )
7939, 78syl5eqel 2705 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U_ x  e.  ( y  u.  {
z } ) B  e.  _V )
80 resttop 20964 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  U_ x  e.  ( y  u.  { z } ) B  e.  _V )  ->  ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  e.  Top )
8138, 79, 80syl2anc 693 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  U_ x  e.  ( y  u.  { z } ) B )  e. 
Top )
82 eqid 2622 . . . . . . . . . . . . . . 15  |-  U. J  =  U. J
8382restin 20970 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  U_ x  e.  ( y  u.  { z } ) B  e.  _V )  ->  ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  =  ( Jt  (
U_ x  e.  ( y  u.  { z } ) B  i^i  U. J ) ) )
8438, 79, 83syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  U_ x  e.  ( y  u.  { z } ) B )  =  ( Jt  ( U_ x  e.  ( y  u.  {
z } ) B  i^i  U. J ) ) )
8584unieqd 4446 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U. ( Jt  U_ x  e.  ( y  u.  { z } ) B )  = 
U. ( Jt  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
) ) )
86 inss2 3834 . . . . . . . . . . . . . 14  |-  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
)  C_  U. J
87 fiuncmp.1 . . . . . . . . . . . . . 14  |-  X  = 
U. J
8886, 87sseqtr4i 3638 . . . . . . . . . . . . 13  |-  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
)  C_  X
8987restuni 20966 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J )  C_  X
)  ->  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
)  =  U. ( Jt  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J ) ) )
9038, 88, 89sylancl 694 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( U_ x  e.  (
y  u.  { z } ) B  i^i  U. J )  =  U. ( Jt  ( U_ x  e.  ( y  u.  {
z } ) B  i^i  U. J ) ) )
9185, 90eqtr4d 2659 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U. ( Jt  U_ x  e.  ( y  u.  { z } ) B )  =  ( U_ x  e.  ( y  u.  {
z } ) B  i^i  U. J ) )
9252uneq2i 3764 . . . . . . . . . . . . . 14  |-  ( U_ x  e.  y  B  u.  U_ x  e.  {
z } B )  =  ( U_ x  e.  y  B  u.  [_ z  /  x ]_ B )
9339, 92eqtri 2644 . . . . . . . . . . . . 13  |-  U_ x  e.  ( y  u.  {
z } ) B  =  ( U_ x  e.  y  B  u.  [_ z  /  x ]_ B )
9493ineq1i 3810 . . . . . . . . . . . 12  |-  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
)  =  ( (
U_ x  e.  y  B  u.  [_ z  /  x ]_ B )  i^i  U. J )
95 indir 3875 . . . . . . . . . . . 12  |-  ( (
U_ x  e.  y  B  u.  [_ z  /  x ]_ B )  i^i  U. J )  =  ( ( U_ x  e.  y  B  i^i  U. J )  u.  ( [_ z  /  x ]_ B  i^i  U. J ) )
9694, 95eqtri 2644 . . . . . . . . . . 11  |-  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
)  =  ( (
U_ x  e.  y  B  i^i  U. J
)  u.  ( [_ z  /  x ]_ B  i^i  U. J ) )
9791, 96syl6eq 2672 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U. ( Jt  U_ x  e.  ( y  u.  { z } ) B )  =  ( ( U_ x  e.  y  B  i^i  U. J )  u.  ( [_ z  /  x ]_ B  i^i  U. J
) ) )
98 inss1 3833 . . . . . . . . . . . . . . 15  |-  ( U_ x  e.  y  B  i^i  U. J )  C_  U_ x  e.  y  B
99 ssun1 3776 . . . . . . . . . . . . . . . 16  |-  U_ x  e.  y  B  C_  ( U_ x  e.  y  B  u.  U_ x  e. 
{ z } B
)
10099, 39sseqtr4i 3638 . . . . . . . . . . . . . . 15  |-  U_ x  e.  y  B  C_  U_ x  e.  ( y  u.  {
z } ) B
10198, 100sstri 3612 . . . . . . . . . . . . . 14  |-  ( U_ x  e.  y  B  i^i  U. J )  C_  U_ x  e.  ( y  u.  { z } ) B
102101a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( U_ x  e.  y  B  i^i  U. J ) 
C_  U_ x  e.  ( y  u.  { z } ) B )
103 restabs 20969 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( U_ x  e.  y  B  i^i  U. J
)  C_  U_ x  e.  ( y  u.  {
z } ) B  /\  U_ x  e.  ( y  u.  {
z } ) B  e.  _V )  -> 
( ( Jt  U_ x  e.  ( y  u.  {
z } ) B )t  ( U_ x  e.  y  B  i^i  U. J ) )  =  ( Jt  ( U_ x  e.  y  B  i^i  U. J ) ) )
10438, 102, 79, 103syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
U_ x  e.  y  B  i^i  U. J
) )  =  ( Jt  ( U_ x  e.  y  B  i^i  U. J ) ) )
10582restin 20970 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  U_ x  e.  y  B  e.  _V )  -> 
( Jt  U_ x  e.  y  B )  =  ( Jt  ( U_ x  e.  y  B  i^i  U. J ) ) )
10638, 44, 105syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  U_ x  e.  y  B )  =  ( Jt  (
U_ x  e.  y  B  i^i  U. J
) ) )
107104, 106eqtr4d 2659 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
U_ x  e.  y  B  i^i  U. J
) )  =  ( Jt 
U_ x  e.  y  B ) )
108107, 40eqeltrd 2701 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
U_ x  e.  y  B  i^i  U. J
) )  e.  Comp )
109 inss1 3833 . . . . . . . . . . . . . . 15  |-  ( [_ z  /  x ]_ B  i^i  U. J )  C_  [_ z  /  x ]_ B
110 ssun2 3777 . . . . . . . . . . . . . . . . 17  |-  U_ x  e.  { z } B  C_  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )
111110, 39sseqtr4i 3638 . . . . . . . . . . . . . . . 16  |-  U_ x  e.  { z } B  C_ 
U_ x  e.  ( y  u.  { z } ) B
11252, 111eqsstr3i 3636 . . . . . . . . . . . . . . 15  |-  [_ z  /  x ]_ B  C_  U_ x  e.  ( y  u.  { z } ) B
113109, 112sstri 3612 . . . . . . . . . . . . . 14  |-  ( [_ z  /  x ]_ B  i^i  U. J )  C_  U_ x  e.  ( y  u.  { z } ) B
114113a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( [_ z  /  x ]_ B  i^i  U. J
)  C_  U_ x  e.  ( y  u.  {
z } ) B )
115 restabs 20969 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( [_ z  /  x ]_ B  i^i  U. J
)  C_  U_ x  e.  ( y  u.  {
z } ) B  /\  U_ x  e.  ( y  u.  {
z } ) B  e.  _V )  -> 
( ( Jt  U_ x  e.  ( y  u.  {
z } ) B )t  ( [_ z  /  x ]_ B  i^i  U. J ) )  =  ( Jt  ( [_ z  /  x ]_ B  i^i  U. J ) ) )
11638, 114, 79, 115syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
[_ z  /  x ]_ B  i^i  U. J
) )  =  ( Jt  ( [_ z  /  x ]_ B  i^i  U. J ) ) )
11782restin 20970 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  [_ z  /  x ]_ B  e.  _V )  ->  ( Jt  [_ z  /  x ]_ B )  =  ( Jt  ( [_ z  /  x ]_ B  i^i  U. J ) ) )
11838, 75, 117syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  [_ z  /  x ]_ B )  =  ( Jt  ( [_ z  /  x ]_ B  i^i  U. J ) ) )
119116, 118eqtr4d 2659 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
[_ z  /  x ]_ B  i^i  U. J
) )  =  ( Jt 
[_ z  /  x ]_ B ) )
120119, 71eqeltrd 2701 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
[_ z  /  x ]_ B  i^i  U. J
) )  e.  Comp )
121 eqid 2622 . . . . . . . . . . 11  |-  U. ( Jt  U_ x  e.  ( y  u.  { z } ) B )  = 
U. ( Jt  U_ x  e.  ( y  u.  {
z } ) B )
122121uncmp 21206 . . . . . . . . . 10  |-  ( ( ( ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  e.  Top  /\  U. ( Jt  U_ x  e.  ( y  u.  { z } ) B )  =  ( ( U_ x  e.  y  B  i^i  U. J )  u.  ( [_ z  /  x ]_ B  i^i  U. J ) ) )  /\  ( ( ( Jt 
U_ x  e.  ( y  u.  { z } ) B )t  (
U_ x  e.  y  B  i^i  U. J
) )  e.  Comp  /\  ( ( Jt  U_ x  e.  ( y  u.  {
z } ) B )t  ( [_ z  /  x ]_ B  i^i  U. J ) )  e. 
Comp ) )  -> 
( Jt  U_ x  e.  ( y  u.  { z } ) B )  e.  Comp )
12381, 97, 108, 120, 122syl22anc 1327 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  U_ x  e.  ( y  u.  { z } ) B )  e. 
Comp )
124123exp32 631 . . . . . . . 8  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( ( y  u.  { z } )  C_  A  ->  ( ( Jt  U_ x  e.  y  B )  e.  Comp  -> 
( Jt  U_ x  e.  ( y  u.  { z } ) B )  e.  Comp ) ) )
125124a2d 29 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( ( ( y  u.  { z } )  C_  A  ->  ( Jt  U_ x  e.  y  B )  e.  Comp )  ->  ( ( y  u.  { z } )  C_  A  ->  ( Jt 
U_ x  e.  ( y  u.  { z } ) B )  e.  Comp ) ) )
12637, 125syl5 34 . . . . . 6  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( ( y 
C_  A  ->  ( Jt  U_ x  e.  y  B )  e.  Comp )  ->  ( ( y  u. 
{ z } ) 
C_  A  ->  ( Jt  U_ x  e.  ( y  u.  { z } ) B )  e. 
Comp ) ) )
127126a2i 14 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( y  C_  A  ->  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  -> 
( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  (
( y  u.  {
z } )  C_  A  ->  ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  e.  Comp )
) )
128127a1i 11 . . . 4  |-  ( y  e.  Fin  ->  (
( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  (
y  C_  A  ->  ( Jt 
U_ x  e.  y  B )  e.  Comp ) )  ->  (
( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( ( y  u.  { z } )  C_  A  ->  ( Jt 
U_ x  e.  ( y  u.  { z } ) B )  e.  Comp ) ) ) )
12910, 16, 22, 28, 33, 128findcard2 8200 . . 3  |-  ( A  e.  Fin  ->  (
( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( A  C_  A  ->  ( Jt  U_ x  e.  A  B )  e.  Comp ) ) )
1302, 129mpcom 38 . 2  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( A  C_  A  ->  ( Jt  U_ x  e.  A  B )  e.  Comp ) )
1311, 130mpi 20 1  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( Jt  U_ x  e.  A  B )  e.  Comp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   [_csb 3533    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   U_ciun 4520  (class class class)co 6650   Fincfn 7955   ↾t crest 16081   Topctop 20698   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190
This theorem is referenced by:  xkococnlem  21462
  Copyright terms: Public domain W3C validator