Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sscoid Structured version   Visualization version   Unicode version

Theorem sscoid 32020
Description: A condition for subset and composition with identity. (Contributed by Scott Fenton, 13-Apr-2018.)
Assertion
Ref Expression
sscoid  |-  ( A 
C_  (  _I  o.  B )  <->  ( Rel  A  /\  A  C_  B
) )

Proof of Theorem sscoid
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5633 . . 3  |-  Rel  (  _I  o.  B )
2 relss 5206 . . 3  |-  ( A 
C_  (  _I  o.  B )  ->  ( Rel  (  _I  o.  B )  ->  Rel  A ) )
31, 2mpi 20 . 2  |-  ( A 
C_  (  _I  o.  B )  ->  Rel  A )
4 elrel 5222 . . . . . 6  |-  ( ( Rel  A  /\  x  e.  A )  ->  E. y E. z  x  =  <. y ,  z >.
)
5 vex 3203 . . . . . . . . . . 11  |-  y  e. 
_V
6 vex 3203 . . . . . . . . . . 11  |-  z  e. 
_V
75, 6brco 5292 . . . . . . . . . 10  |-  ( y (  _I  o.  B
) z  <->  E. x
( y B x  /\  x  _I  z
) )
8 ancom 466 . . . . . . . . . . . . 13  |-  ( ( y B x  /\  x  _I  z )  <->  ( x  _I  z  /\  y B x ) )
96ideq 5274 . . . . . . . . . . . . . 14  |-  ( x  _I  z  <->  x  =  z )
109anbi1i 731 . . . . . . . . . . . . 13  |-  ( ( x  _I  z  /\  y B x )  <->  ( x  =  z  /\  y B x ) )
118, 10bitri 264 . . . . . . . . . . . 12  |-  ( ( y B x  /\  x  _I  z )  <->  ( x  =  z  /\  y B x ) )
1211exbii 1774 . . . . . . . . . . 11  |-  ( E. x ( y B x  /\  x  _I  z )  <->  E. x
( x  =  z  /\  y B x ) )
13 breq2 4657 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
y B x  <->  y B
z ) )
146, 13ceqsexv 3242 . . . . . . . . . . 11  |-  ( E. x ( x  =  z  /\  y B x )  <->  y B
z )
1512, 14bitri 264 . . . . . . . . . 10  |-  ( E. x ( y B x  /\  x  _I  z )  <->  y B
z )
167, 15bitri 264 . . . . . . . . 9  |-  ( y (  _I  o.  B
) z  <->  y B
z )
1716a1i 11 . . . . . . . 8  |-  ( x  =  <. y ,  z
>.  ->  ( y (  _I  o.  B ) z  <->  y B z ) )
18 eleq1 2689 . . . . . . . . 9  |-  ( x  =  <. y ,  z
>.  ->  ( x  e.  (  _I  o.  B
)  <->  <. y ,  z
>.  e.  (  _I  o.  B ) ) )
19 df-br 4654 . . . . . . . . 9  |-  ( y (  _I  o.  B
) z  <->  <. y ,  z >.  e.  (  _I  o.  B ) )
2018, 19syl6bbr 278 . . . . . . . 8  |-  ( x  =  <. y ,  z
>.  ->  ( x  e.  (  _I  o.  B
)  <->  y (  _I  o.  B ) z ) )
21 eleq1 2689 . . . . . . . . 9  |-  ( x  =  <. y ,  z
>.  ->  ( x  e.  B  <->  <. y ,  z
>.  e.  B ) )
22 df-br 4654 . . . . . . . . 9  |-  ( y B z  <->  <. y ,  z >.  e.  B
)
2321, 22syl6bbr 278 . . . . . . . 8  |-  ( x  =  <. y ,  z
>.  ->  ( x  e.  B  <->  y B z ) )
2417, 20, 233bitr4d 300 . . . . . . 7  |-  ( x  =  <. y ,  z
>.  ->  ( x  e.  (  _I  o.  B
)  <->  x  e.  B
) )
2524exlimivv 1860 . . . . . 6  |-  ( E. y E. z  x  =  <. y ,  z
>.  ->  ( x  e.  (  _I  o.  B
)  <->  x  e.  B
) )
264, 25syl 17 . . . . 5  |-  ( ( Rel  A  /\  x  e.  A )  ->  (
x  e.  (  _I  o.  B )  <->  x  e.  B ) )
2726pm5.74da 723 . . . 4  |-  ( Rel 
A  ->  ( (
x  e.  A  ->  x  e.  (  _I  o.  B ) )  <->  ( x  e.  A  ->  x  e.  B ) ) )
2827albidv 1849 . . 3  |-  ( Rel 
A  ->  ( A. x ( x  e.  A  ->  x  e.  (  _I  o.  B
) )  <->  A. x
( x  e.  A  ->  x  e.  B ) ) )
29 dfss2 3591 . . 3  |-  ( A 
C_  (  _I  o.  B )  <->  A. x
( x  e.  A  ->  x  e.  (  _I  o.  B ) ) )
30 dfss2 3591 . . 3  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
3128, 29, 303bitr4g 303 . 2  |-  ( Rel 
A  ->  ( A  C_  (  _I  o.  B
)  <->  A  C_  B ) )
323, 31biadan2 674 1  |-  ( A 
C_  (  _I  o.  B )  <->  ( Rel  A  /\  A  C_  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990    C_ wss 3574   <.cop 4183   class class class wbr 4653    _I cid 5023    o. ccom 5118   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-co 5123
This theorem is referenced by:  dffun10  32021
  Copyright terms: Public domain W3C validator