Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfom5b Structured version   Visualization version   Unicode version

Theorem dfom5b 32019
Description: A quantifier-free definition of  om that does not depend on ax-inf 8535. (Note: label was changed from dfom5 8547 to dfom5b 32019 to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
dfom5b  |-  om  =  ( On  i^i  |^| Limits )

Proof of Theorem dfom5b
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . 6  |-  x  e. 
_V
21elint 4481 . . . . 5  |-  ( x  e.  |^| Limits 
<-> 
A. y ( y  e.  Limits  ->  x  e.  y ) )
3 vex 3203 . . . . . . . 8  |-  y  e. 
_V
43ellimits 32017 . . . . . . 7  |-  ( y  e.  Limits 
<->  Lim  y )
54imbi1i 339 . . . . . 6  |-  ( ( y  e.  Limits  ->  x  e.  y )  <->  ( Lim  y  ->  x  e.  y ) )
65albii 1747 . . . . 5  |-  ( A. y ( y  e. 
Limits  ->  x  e.  y )  <->  A. y ( Lim  y  ->  x  e.  y ) )
72, 6bitr2i 265 . . . 4  |-  ( A. y ( Lim  y  ->  x  e.  y )  <-> 
x  e.  |^| Limits )
87anbi2i 730 . . 3  |-  ( ( x  e.  On  /\  A. y ( Lim  y  ->  x  e.  y ) )  <->  ( x  e.  On  /\  x  e. 
|^| Limits ) )
9 elom 7068 . . 3  |-  ( x  e.  om  <->  ( x  e.  On  /\  A. y
( Lim  y  ->  x  e.  y ) ) )
10 elin 3796 . . 3  |-  ( x  e.  ( On  i^i  |^| Limits )  <->  ( x  e.  On  /\  x  e. 
|^| Limits ) )
118, 9, 103bitr4i 292 . 2  |-  ( x  e.  om  <->  x  e.  ( On  i^i  |^| Limits ) )
1211eqriv 2619 1  |-  om  =  ( On  i^i  |^| Limits )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990    i^i cin 3573   |^|cint 4475   Oncon0 5723   Lim wlim 5724   omcom 7065   Limitsclimits 31943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-symdif 3844  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ord 5726  df-on 5727  df-lim 5728  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-om 7066  df-1st 7168  df-2nd 7169  df-txp 31961  df-bigcup 31965  df-fix 31966  df-limits 31967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator