| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffun10 | Structured version Visualization version Unicode version | ||
| Description: Another potential definition of functionhood. Based on statements in http://people.math.gatech.edu/~belinfan/research/autoreas/otter/sum/fs/. (Contributed by Scott Fenton, 30-Aug-2017.) |
| Ref | Expression |
|---|---|
| dffun10 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrel 5207 |
. . . 4
| |
| 2 | impexp 462 |
. . . . . . 7
| |
| 3 | 2 | albii 1747 |
. . . . . 6
|
| 4 | 19.21v 1868 |
. . . . . 6
| |
| 5 | vex 3203 |
. . . . . . . . . . 11
| |
| 6 | vex 3203 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | opelco 5293 |
. . . . . . . . . 10
|
| 8 | df-br 4654 |
. . . . . . . . . . . 12
| |
| 9 | brv 4941 |
. . . . . . . . . . . . . 14
| |
| 10 | brdif 4705 |
. . . . . . . . . . . . . 14
| |
| 11 | 9, 10 | mpbiran 953 |
. . . . . . . . . . . . 13
|
| 12 | 6 | ideq 5274 |
. . . . . . . . . . . . . 14
|
| 13 | equcom 1945 |
. . . . . . . . . . . . . 14
| |
| 14 | 12, 13 | bitri 264 |
. . . . . . . . . . . . 13
|
| 15 | 11, 14 | xchbinx 324 |
. . . . . . . . . . . 12
|
| 16 | 8, 15 | anbi12i 733 |
. . . . . . . . . . 11
|
| 17 | 16 | exbii 1774 |
. . . . . . . . . 10
|
| 18 | exanali 1786 |
. . . . . . . . . 10
| |
| 19 | 7, 17, 18 | 3bitri 286 |
. . . . . . . . 9
|
| 20 | 19 | con2bii 347 |
. . . . . . . 8
|
| 21 | opex 4932 |
. . . . . . . . 9
| |
| 22 | eldif 3584 |
. . . . . . . . 9
| |
| 23 | 21, 22 | mpbiran 953 |
. . . . . . . 8
|
| 24 | 20, 23 | bitr4i 267 |
. . . . . . 7
|
| 25 | 24 | imbi2i 326 |
. . . . . 6
|
| 26 | 3, 4, 25 | 3bitri 286 |
. . . . 5
|
| 27 | 26 | 2albii 1748 |
. . . 4
|
| 28 | 1, 27 | syl6rbbr 279 |
. . 3
|
| 29 | 28 | pm5.32i 669 |
. 2
|
| 30 | dffun4 5900 |
. 2
| |
| 31 | sscoid 32020 |
. 2
| |
| 32 | 29, 30, 31 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-fun 5890 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |