MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspmlem Structured version   Visualization version   Unicode version

Theorem sspmlem 27587
Description: Lemma for sspm 27589 and others. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspmlem.y  |-  Y  =  ( BaseSet `  W )
sspmlem.h  |-  H  =  ( SubSp `  U )
sspmlem.1  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  (
x F y )  =  ( x G y ) )
sspmlem.2  |-  ( W  e.  NrmCVec  ->  F : ( Y  X.  Y ) --> R )
sspmlem.3  |-  ( U  e.  NrmCVec  ->  G : ( ( BaseSet `  U )  X.  ( BaseSet `  U )
) --> S )
Assertion
Ref Expression
sspmlem  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  F  =  ( G  |`  ( Y  X.  Y
) ) )
Distinct variable groups:    x, y, F    x, G, y    x, H, y    x, U, y   
x, W, y    x, Y, y
Allowed substitution hints:    R( x, y)    S( x, y)

Proof of Theorem sspmlem
StepHypRef Expression
1 sspmlem.1 . . . . 5  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  (
x F y )  =  ( x G y ) )
2 ovres 6800 . . . . . 6  |-  ( ( x  e.  Y  /\  y  e.  Y )  ->  ( x ( G  |`  ( Y  X.  Y
) ) y )  =  ( x G y ) )
32adantl 482 . . . . 5  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  (
x ( G  |`  ( Y  X.  Y
) ) y )  =  ( x G y ) )
41, 3eqtr4d 2659 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  (
x F y )  =  ( x ( G  |`  ( Y  X.  Y ) ) y ) )
54ralrimivva 2971 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  A. x  e.  Y  A. y  e.  Y  ( x F y )  =  ( x ( G  |`  ( Y  X.  Y
) ) y ) )
6 eqid 2622 . . 3  |-  ( Y  X.  Y )  =  ( Y  X.  Y
)
75, 6jctil 560 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  (
( Y  X.  Y
)  =  ( Y  X.  Y )  /\  A. x  e.  Y  A. y  e.  Y  (
x F y )  =  ( x ( G  |`  ( Y  X.  Y ) ) y ) ) )
8 sspmlem.h . . . . 5  |-  H  =  ( SubSp `  U )
98sspnv 27581 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  W  e.  NrmCVec )
10 sspmlem.2 . . . 4  |-  ( W  e.  NrmCVec  ->  F : ( Y  X.  Y ) --> R )
11 ffn 6045 . . . 4  |-  ( F : ( Y  X.  Y ) --> R  ->  F  Fn  ( Y  X.  Y ) )
129, 10, 113syl 18 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  F  Fn  ( Y  X.  Y
) )
13 sspmlem.3 . . . . . 6  |-  ( U  e.  NrmCVec  ->  G : ( ( BaseSet `  U )  X.  ( BaseSet `  U )
) --> S )
14 ffn 6045 . . . . . 6  |-  ( G : ( ( BaseSet `  U )  X.  ( BaseSet
`  U ) ) --> S  ->  G  Fn  ( ( BaseSet `  U
)  X.  ( BaseSet `  U ) ) )
1513, 14syl 17 . . . . 5  |-  ( U  e.  NrmCVec  ->  G  Fn  (
( BaseSet `  U )  X.  ( BaseSet `  U )
) )
1615adantr 481 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  G  Fn  ( ( BaseSet `  U
)  X.  ( BaseSet `  U ) ) )
17 eqid 2622 . . . . . 6  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
18 sspmlem.y . . . . . 6  |-  Y  =  ( BaseSet `  W )
1917, 18, 8sspba 27582 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  Y  C_  ( BaseSet `  U )
)
20 xpss12 5225 . . . . 5  |-  ( ( Y  C_  ( BaseSet `  U )  /\  Y  C_  ( BaseSet `  U )
)  ->  ( Y  X.  Y )  C_  (
( BaseSet `  U )  X.  ( BaseSet `  U )
) )
2119, 19, 20syl2anc 693 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( Y  X.  Y )  C_  ( ( BaseSet `  U
)  X.  ( BaseSet `  U ) ) )
22 fnssres 6004 . . . 4  |-  ( ( G  Fn  ( (
BaseSet `  U )  X.  ( BaseSet `  U )
)  /\  ( Y  X.  Y )  C_  (
( BaseSet `  U )  X.  ( BaseSet `  U )
) )  ->  ( G  |`  ( Y  X.  Y ) )  Fn  ( Y  X.  Y
) )
2316, 21, 22syl2anc 693 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( G  |`  ( Y  X.  Y ) )  Fn  ( Y  X.  Y
) )
24 eqfnov 6766 . . 3  |-  ( ( F  Fn  ( Y  X.  Y )  /\  ( G  |`  ( Y  X.  Y ) )  Fn  ( Y  X.  Y ) )  -> 
( F  =  ( G  |`  ( Y  X.  Y ) )  <->  ( ( Y  X.  Y )  =  ( Y  X.  Y
)  /\  A. x  e.  Y  A. y  e.  Y  ( x F y )  =  ( x ( G  |`  ( Y  X.  Y
) ) y ) ) ) )
2512, 23, 24syl2anc 693 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( F  =  ( G  |`  ( Y  X.  Y
) )  <->  ( ( Y  X.  Y )  =  ( Y  X.  Y
)  /\  A. x  e.  Y  A. y  e.  Y  ( x F y )  =  ( x ( G  |`  ( Y  X.  Y
) ) y ) ) ) )
267, 25mpbird 247 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  F  =  ( G  |`  ( Y  X.  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574    X. cxp 5112    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   NrmCVeccnv 27439   BaseSetcba 27441   SubSpcss 27576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-ov 6653  df-oprab 6654  df-1st 7168  df-2nd 7169  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-nmcv 27455  df-ssp 27577
This theorem is referenced by:  sspm  27589  sspims  27594
  Copyright terms: Public domain W3C validator