MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspmval Structured version   Visualization version   Unicode version

Theorem sspmval 27588
Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspm.y  |-  Y  =  ( BaseSet `  W )
sspm.m  |-  M  =  ( -v `  U
)
sspm.l  |-  L  =  ( -v `  W
)
sspm.h  |-  H  =  ( SubSp `  U )
Assertion
Ref Expression
sspmval  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  Y  /\  B  e.  Y
) )  ->  ( A L B )  =  ( A M B ) )

Proof of Theorem sspmval
StepHypRef Expression
1 sspm.h . . . . . . . 8  |-  H  =  ( SubSp `  U )
21sspnv 27581 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  W  e.  NrmCVec )
3 neg1cn 11124 . . . . . . . . 9  |-  -u 1  e.  CC
4 sspm.y . . . . . . . . . 10  |-  Y  =  ( BaseSet `  W )
5 eqid 2622 . . . . . . . . . 10  |-  ( .sOLD `  W )  =  ( .sOLD `  W )
64, 5nvscl 27481 . . . . . . . . 9  |-  ( ( W  e.  NrmCVec  /\  -u 1  e.  CC  /\  B  e.  Y )  ->  ( -u 1 ( .sOLD `  W ) B )  e.  Y )
73, 6mp3an2 1412 . . . . . . . 8  |-  ( ( W  e.  NrmCVec  /\  B  e.  Y )  ->  ( -u 1 ( .sOLD `  W ) B )  e.  Y )
87ex 450 . . . . . . 7  |-  ( W  e.  NrmCVec  ->  ( B  e.  Y  ->  ( -u 1
( .sOLD `  W ) B )  e.  Y ) )
92, 8syl 17 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( B  e.  Y  ->  (
-u 1 ( .sOLD `  W ) B )  e.  Y
) )
109anim2d 589 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  (
( A  e.  Y  /\  B  e.  Y
)  ->  ( A  e.  Y  /\  ( -u 1 ( .sOLD `  W ) B )  e.  Y ) ) )
1110imp 445 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  Y  /\  B  e.  Y
) )  ->  ( A  e.  Y  /\  ( -u 1 ( .sOLD `  W ) B )  e.  Y
) )
12 eqid 2622 . . . . 5  |-  ( +v
`  U )  =  ( +v `  U
)
13 eqid 2622 . . . . 5  |-  ( +v
`  W )  =  ( +v `  W
)
144, 12, 13, 1sspgval 27584 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  Y  /\  ( -u 1 ( .sOLD `  W
) B )  e.  Y ) )  -> 
( A ( +v
`  W ) (
-u 1 ( .sOLD `  W ) B ) )  =  ( A ( +v
`  U ) (
-u 1 ( .sOLD `  W ) B ) ) )
1511, 14syldan 487 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  Y  /\  B  e.  Y
) )  ->  ( A ( +v `  W ) ( -u
1 ( .sOLD `  W ) B ) )  =  ( A ( +v `  U
) ( -u 1
( .sOLD `  W ) B ) ) )
16 eqid 2622 . . . . . . 7  |-  ( .sOLD `  U )  =  ( .sOLD `  U )
174, 16, 5, 1sspsval 27586 . . . . . 6  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( -u 1  e.  CC  /\  B  e.  Y ) )  -> 
( -u 1 ( .sOLD `  W ) B )  =  (
-u 1 ( .sOLD `  U ) B ) )
183, 17mpanr1 719 . . . . 5  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  B  e.  Y
)  ->  ( -u 1
( .sOLD `  W ) B )  =  ( -u 1
( .sOLD `  U ) B ) )
1918adantrl 752 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  Y  /\  B  e.  Y
) )  ->  ( -u 1 ( .sOLD `  W ) B )  =  ( -u 1
( .sOLD `  U ) B ) )
2019oveq2d 6666 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  Y  /\  B  e.  Y
) )  ->  ( A ( +v `  U ) ( -u
1 ( .sOLD `  W ) B ) )  =  ( A ( +v `  U
) ( -u 1
( .sOLD `  U ) B ) ) )
2115, 20eqtrd 2656 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  Y  /\  B  e.  Y
) )  ->  ( A ( +v `  W ) ( -u
1 ( .sOLD `  W ) B ) )  =  ( A ( +v `  U
) ( -u 1
( .sOLD `  U ) B ) ) )
22 sspm.l . . . . 5  |-  L  =  ( -v `  W
)
234, 13, 5, 22nvmval 27497 . . . 4  |-  ( ( W  e.  NrmCVec  /\  A  e.  Y  /\  B  e.  Y )  ->  ( A L B )  =  ( A ( +v
`  W ) (
-u 1 ( .sOLD `  W ) B ) ) )
24233expb 1266 . . 3  |-  ( ( W  e.  NrmCVec  /\  ( A  e.  Y  /\  B  e.  Y )
)  ->  ( A L B )  =  ( A ( +v `  W ) ( -u
1 ( .sOLD `  W ) B ) ) )
252, 24sylan 488 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  Y  /\  B  e.  Y
) )  ->  ( A L B )  =  ( A ( +v
`  W ) (
-u 1 ( .sOLD `  W ) B ) ) )
26 eqid 2622 . . . . . . 7  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
2726, 4, 1sspba 27582 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  Y  C_  ( BaseSet `  U )
)
2827sseld 3602 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( A  e.  Y  ->  A  e.  ( BaseSet `  U
) ) )
2927sseld 3602 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( B  e.  Y  ->  B  e.  ( BaseSet `  U
) ) )
3028, 29anim12d 586 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  (
( A  e.  Y  /\  B  e.  Y
)  ->  ( A  e.  ( BaseSet `  U )  /\  B  e.  ( BaseSet
`  U ) ) ) )
3130imp 445 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  Y  /\  B  e.  Y
) )  ->  ( A  e.  ( BaseSet `  U )  /\  B  e.  ( BaseSet `  U )
) )
32 sspm.m . . . . . 6  |-  M  =  ( -v `  U
)
3326, 12, 16, 32nvmval 27497 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  ( BaseSet `  U )  /\  B  e.  ( BaseSet
`  U ) )  ->  ( A M B )  =  ( A ( +v `  U ) ( -u
1 ( .sOLD `  U ) B ) ) )
34333expb 1266 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  ( BaseSet `  U )  /\  B  e.  ( BaseSet `  U )
) )  ->  ( A M B )  =  ( A ( +v
`  U ) (
-u 1 ( .sOLD `  U ) B ) ) )
3534adantlr 751 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  (
BaseSet `  U )  /\  B  e.  ( BaseSet `  U ) ) )  ->  ( A M B )  =  ( A ( +v `  U ) ( -u
1 ( .sOLD `  U ) B ) ) )
3631, 35syldan 487 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  Y  /\  B  e.  Y
) )  ->  ( A M B )  =  ( A ( +v
`  U ) (
-u 1 ( .sOLD `  U ) B ) ) )
3721, 25, 363eqtr4d 2666 1  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  Y  /\  B  e.  Y
) )  ->  ( A L B )  =  ( A M B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937   -ucneg 10267   NrmCVeccnv 27439   +vcpv 27440   BaseSetcba 27441   .sOLDcns 27442   -vcnsb 27444   SubSpcss 27576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ssp 27577
This theorem is referenced by:  sspm  27589  sspz  27590  sspimsval  27593  sspph  27710
  Copyright terms: Public domain W3C validator