MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssxpb Structured version   Visualization version   Unicode version

Theorem ssxpb 5568
Description: A Cartesian product subclass relationship is equivalent to the relationship for it components. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
ssxpb  |-  ( ( A  X.  B )  =/=  (/)  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  <->  ( A  C_  C  /\  B  C_  D
) ) )

Proof of Theorem ssxpb
StepHypRef Expression
1 xpnz 5553 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  <->  ( A  X.  B )  =/=  (/) )
2 dmxp 5344 . . . . . . . . 9  |-  ( B  =/=  (/)  ->  dom  ( A  X.  B )  =  A )
32adantl 482 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  dom  ( A  X.  B
)  =  A )
41, 3sylbir 225 . . . . . . 7  |-  ( ( A  X.  B )  =/=  (/)  ->  dom  ( A  X.  B )  =  A )
54adantr 481 . . . . . 6  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  dom  ( A  X.  B
)  =  A )
6 dmss 5323 . . . . . . 7  |-  ( ( A  X.  B ) 
C_  ( C  X.  D )  ->  dom  ( A  X.  B
)  C_  dom  ( C  X.  D ) )
76adantl 482 . . . . . 6  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  dom  ( A  X.  B
)  C_  dom  ( C  X.  D ) )
85, 7eqsstr3d 3640 . . . . 5  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  A  C_ 
dom  ( C  X.  D ) )
9 dmxpss 5565 . . . . 5  |-  dom  ( C  X.  D )  C_  C
108, 9syl6ss 3615 . . . 4  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  A  C_  C )
11 rnxp 5564 . . . . . . . . 9  |-  ( A  =/=  (/)  ->  ran  ( A  X.  B )  =  B )
1211adantr 481 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  ran  ( A  X.  B
)  =  B )
131, 12sylbir 225 . . . . . . 7  |-  ( ( A  X.  B )  =/=  (/)  ->  ran  ( A  X.  B )  =  B )
1413adantr 481 . . . . . 6  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  ran  ( A  X.  B
)  =  B )
15 rnss 5354 . . . . . . 7  |-  ( ( A  X.  B ) 
C_  ( C  X.  D )  ->  ran  ( A  X.  B
)  C_  ran  ( C  X.  D ) )
1615adantl 482 . . . . . 6  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  ran  ( A  X.  B
)  C_  ran  ( C  X.  D ) )
1714, 16eqsstr3d 3640 . . . . 5  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  B  C_ 
ran  ( C  X.  D ) )
18 rnxpss 5566 . . . . 5  |-  ran  ( C  X.  D )  C_  D
1917, 18syl6ss 3615 . . . 4  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  B  C_  D )
2010, 19jca 554 . . 3  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  ( A  C_  C  /\  B  C_  D ) )
2120ex 450 . 2  |-  ( ( A  X.  B )  =/=  (/)  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  ->  ( A  C_  C  /\  B  C_  D ) ) )
22 xpss12 5225 . 2  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( A  X.  B
)  C_  ( C  X.  D ) )
2321, 22impbid1 215 1  |-  ( ( A  X.  B )  =/=  (/)  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  <->  ( A  C_  C  /\  B  C_  D
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    =/= wne 2794    C_ wss 3574   (/)c0 3915    X. cxp 5112   dom cdm 5114   ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  xp11  5569  dibord  36448
  Copyright terms: Public domain W3C validator