Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibord Structured version   Visualization version   Unicode version

Theorem dibord 36448
Description: The isomorphism B for a lattice  K is order-preserving in the region under co-atom  W. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
dib11.b  |-  B  =  ( Base `  K
)
dib11.l  |-  .<_  =  ( le `  K )
dib11.h  |-  H  =  ( LHyp `  K
)
dib11.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibord  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( I `  X )  C_  (
I `  Y )  <->  X 
.<_  Y ) )

Proof of Theorem dibord
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 dib11.b . . . . 5  |-  B  =  ( Base `  K
)
2 dib11.l . . . . 5  |-  .<_  =  ( le `  K )
3 dib11.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 eqid 2622 . . . . 5  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
5 eqid 2622 . . . . 5  |-  ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  B ) )  =  ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  B ) )
6 eqid 2622 . . . . 5  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
7 dib11.i . . . . 5  |-  I  =  ( ( DIsoB `  K
) `  W )
81, 2, 3, 4, 5, 6, 7dibval2 36433 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =  ( ( ( ( DIsoA `  K ) `  W ) `  X
)  X.  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } ) )
983adant3 1081 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( I `  X
)  =  ( ( ( ( DIsoA `  K
) `  W ) `  X )  X.  {
( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) } ) )
101, 2, 3, 4, 5, 6, 7dibval2 36433 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  (
I `  Y )  =  ( ( ( ( DIsoA `  K ) `  W ) `  Y
)  X.  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } ) )
11103adant2 1080 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( I `  Y
)  =  ( ( ( ( DIsoA `  K
) `  W ) `  Y )  X.  {
( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) } ) )
129, 11sseq12d 3634 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( I `  X )  C_  (
I `  Y )  <->  ( ( ( ( DIsoA `  K ) `  W
) `  X )  X.  { ( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) } )  C_  ( ( ( (
DIsoA `  K ) `  W ) `  Y
)  X.  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } ) ) )
131, 2, 3, 7dibn0 36442 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =/=  (/) )
14133adant3 1081 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( I `  X
)  =/=  (/) )
159, 14eqnetrrd 2862 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( ( (
DIsoA `  K ) `  W ) `  X
)  X.  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } )  =/=  (/) )
16 ssxpb 5568 . . 3  |-  ( ( ( ( ( DIsoA `  K ) `  W
) `  X )  X.  { ( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) } )  =/=  (/)  ->  ( ( ( ( ( DIsoA `  K
) `  W ) `  X )  X.  {
( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) } )  C_  ( ( ( (
DIsoA `  K ) `  W ) `  Y
)  X.  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } )  <->  ( ( ( ( DIsoA `  K ) `  W ) `  X
)  C_  ( (
( DIsoA `  K ) `  W ) `  Y
)  /\  { (
f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } 
C_  { ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  B ) ) } ) ) )
1715, 16syl 17 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( ( ( ( DIsoA `  K ) `  W ) `  X
)  X.  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } )  C_  ( (
( ( DIsoA `  K
) `  W ) `  Y )  X.  {
( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) } )  <->  ( (
( ( DIsoA `  K
) `  W ) `  X )  C_  (
( ( DIsoA `  K
) `  W ) `  Y )  /\  {
( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) }  C_  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } ) ) )
18 ssid 3624 . . . 4  |-  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } 
C_  { ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  B ) ) }
1918biantru 526 . . 3  |-  ( ( ( ( DIsoA `  K
) `  W ) `  X )  C_  (
( ( DIsoA `  K
) `  W ) `  Y )  <->  ( (
( ( DIsoA `  K
) `  W ) `  X )  C_  (
( ( DIsoA `  K
) `  W ) `  Y )  /\  {
( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  B ) ) }  C_  { ( f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } ) )
201, 2, 3, 6diaord 36336 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( ( (
DIsoA `  K ) `  W ) `  X
)  C_  ( (
( DIsoA `  K ) `  W ) `  Y
)  <->  X  .<_  Y ) )
2119, 20syl5bbr 274 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( ( ( ( DIsoA `  K ) `  W ) `  X
)  C_  ( (
( DIsoA `  K ) `  W ) `  Y
)  /\  { (
f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  B ) ) } 
C_  { ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  B ) ) } )  <->  X  .<_  Y ) )
2212, 17, 213bitrd 294 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  -> 
( ( I `  X )  C_  (
I `  Y )  <->  X 
.<_  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112    |` cres 5116   ` cfv 5888   Basecbs 15857   lecple 15948   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   DIsoAcdia 36317   DIsoBcdib 36427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-disoa 36318  df-dib 36428
This theorem is referenced by:  dib11N  36449  cdlemn2a  36485  dihord1  36507  dihord3  36546  dihord5b  36548
  Copyright terms: Public domain W3C validator