MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpnz Structured version   Visualization version   Unicode version

Theorem xpnz 5553
Description: The Cartesian product of nonempty classes is nonempty. (Variation of a theorem contributed by Raph Levien, 30-Jun-2006.) (Contributed by NM, 30-Jun-2006.)
Assertion
Ref Expression
xpnz  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  <->  ( A  X.  B )  =/=  (/) )

Proof of Theorem xpnz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3931 . . . . 5  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
2 n0 3931 . . . . 5  |-  ( B  =/=  (/)  <->  E. y  y  e.  B )
31, 2anbi12i 733 . . . 4  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  <->  ( E. x  x  e.  A  /\  E. y  y  e.  B ) )
4 eeanv 2182 . . . 4  |-  ( E. x E. y ( x  e.  A  /\  y  e.  B )  <->  ( E. x  x  e.  A  /\  E. y 
y  e.  B ) )
53, 4bitr4i 267 . . 3  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  <->  E. x E. y ( x  e.  A  /\  y  e.  B ) )
6 opex 4932 . . . . . 6  |-  <. x ,  y >.  e.  _V
7 eleq1 2689 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  ( A  X.  B
)  <->  <. x ,  y
>.  e.  ( A  X.  B ) ) )
8 opelxp 5146 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
97, 8syl6bb 276 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) ) )
106, 9spcev 3300 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  E. z  z  e.  ( A  X.  B
) )
11 n0 3931 . . . . 5  |-  ( ( A  X.  B )  =/=  (/)  <->  E. z  z  e.  ( A  X.  B
) )
1210, 11sylibr 224 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( A  X.  B
)  =/=  (/) )
1312exlimivv 1860 . . 3  |-  ( E. x E. y ( x  e.  A  /\  y  e.  B )  ->  ( A  X.  B
)  =/=  (/) )
145, 13sylbi 207 . 2  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  ( A  X.  B )  =/=  (/) )
15 xpeq1 5128 . . . . 5  |-  ( A  =  (/)  ->  ( A  X.  B )  =  ( (/)  X.  B
) )
16 0xp 5199 . . . . 5  |-  ( (/)  X.  B )  =  (/)
1715, 16syl6eq 2672 . . . 4  |-  ( A  =  (/)  ->  ( A  X.  B )  =  (/) )
1817necon3i 2826 . . 3  |-  ( ( A  X.  B )  =/=  (/)  ->  A  =/=  (/) )
19 xpeq2 5129 . . . . 5  |-  ( B  =  (/)  ->  ( A  X.  B )  =  ( A  X.  (/) ) )
20 xp0 5552 . . . . 5  |-  ( A  X.  (/) )  =  (/)
2119, 20syl6eq 2672 . . . 4  |-  ( B  =  (/)  ->  ( A  X.  B )  =  (/) )
2221necon3i 2826 . . 3  |-  ( ( A  X.  B )  =/=  (/)  ->  B  =/=  (/) )
2318, 22jca 554 . 2  |-  ( ( A  X.  B )  =/=  (/)  ->  ( A  =/=  (/)  /\  B  =/=  (/) ) )
2414, 23impbii 199 1  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  <->  ( A  X.  B )  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   (/)c0 3915   <.cop 4183    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122
This theorem is referenced by:  xpeq0  5554  ssxpb  5568  xp11  5569  unixpid  5670  xpexr2  7107  frxp  7287  xpfir  8182  axcc2lem  9258  axdc4lem  9277  mamufacex  20195  txindis  21437  bj-xpnzex  32946  bj-1upln0  32997  bj-2upln1upl  33012  dibn0  36442
  Copyright terms: Public domain W3C validator