MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp11 Structured version   Visualization version   Unicode version

Theorem xp11 5569
Description: The Cartesian product of nonempty classes is one-to-one. (Contributed by NM, 31-May-2008.)
Assertion
Ref Expression
xp11  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  (
( A  X.  B
)  =  ( C  X.  D )  <->  ( A  =  C  /\  B  =  D ) ) )

Proof of Theorem xp11
StepHypRef Expression
1 xpnz 5553 . . 3  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  <->  ( A  X.  B )  =/=  (/) )
2 anidm 676 . . . . . 6  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  =/=  (/) )  <->  ( A  X.  B )  =/=  (/) )
3 neeq1 2856 . . . . . . 7  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( A  X.  B
)  =/=  (/)  <->  ( C  X.  D )  =/=  (/) ) )
43anbi2d 740 . . . . . 6  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( ( A  X.  B )  =/=  (/)  /\  ( A  X.  B )  =/=  (/) )  <->  ( ( A  X.  B )  =/=  (/)  /\  ( C  X.  D )  =/=  (/) ) ) )
52, 4syl5bbr 274 . . . . 5  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( A  X.  B
)  =/=  (/)  <->  ( ( A  X.  B )  =/=  (/)  /\  ( C  X.  D )  =/=  (/) ) ) )
6 eqimss 3657 . . . . . . . 8  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( A  X.  B )  C_  ( C  X.  D
) )
7 ssxpb 5568 . . . . . . . 8  |-  ( ( A  X.  B )  =/=  (/)  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  <->  ( A  C_  C  /\  B  C_  D
) ) )
86, 7syl5ibcom 235 . . . . . . 7  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( A  X.  B
)  =/=  (/)  ->  ( A  C_  C  /\  B  C_  D ) ) )
9 eqimss2 3658 . . . . . . . 8  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( C  X.  D )  C_  ( A  X.  B
) )
10 ssxpb 5568 . . . . . . . 8  |-  ( ( C  X.  D )  =/=  (/)  ->  ( ( C  X.  D )  C_  ( A  X.  B
)  <->  ( C  C_  A  /\  D  C_  B
) ) )
119, 10syl5ibcom 235 . . . . . . 7  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( C  X.  D
)  =/=  (/)  ->  ( C  C_  A  /\  D  C_  B ) ) )
128, 11anim12d 586 . . . . . 6  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( ( A  X.  B )  =/=  (/)  /\  ( C  X.  D )  =/=  (/) )  ->  ( ( A  C_  C  /\  B  C_  D )  /\  ( C  C_  A  /\  D  C_  B ) ) ) )
13 an4 865 . . . . . . 7  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  C_  A  /\  D  C_  B
) )  <->  ( ( A  C_  C  /\  C  C_  A )  /\  ( B  C_  D  /\  D  C_  B ) ) )
14 eqss 3618 . . . . . . . 8  |-  ( A  =  C  <->  ( A  C_  C  /\  C  C_  A ) )
15 eqss 3618 . . . . . . . 8  |-  ( B  =  D  <->  ( B  C_  D  /\  D  C_  B ) )
1614, 15anbi12i 733 . . . . . . 7  |-  ( ( A  =  C  /\  B  =  D )  <->  ( ( A  C_  C  /\  C  C_  A )  /\  ( B  C_  D  /\  D  C_  B
) ) )
1713, 16bitr4i 267 . . . . . 6  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  C_  A  /\  D  C_  B
) )  <->  ( A  =  C  /\  B  =  D ) )
1812, 17syl6ib 241 . . . . 5  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( ( A  X.  B )  =/=  (/)  /\  ( C  X.  D )  =/=  (/) )  ->  ( A  =  C  /\  B  =  D ) ) )
195, 18sylbid 230 . . . 4  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( A  X.  B
)  =/=  (/)  ->  ( A  =  C  /\  B  =  D )
) )
2019com12 32 . . 3  |-  ( ( A  X.  B )  =/=  (/)  ->  ( ( A  X.  B )  =  ( C  X.  D
)  ->  ( A  =  C  /\  B  =  D ) ) )
211, 20sylbi 207 . 2  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  (
( A  X.  B
)  =  ( C  X.  D )  -> 
( A  =  C  /\  B  =  D ) ) )
22 xpeq12 5134 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A  X.  B
)  =  ( C  X.  D ) )
2321, 22impbid1 215 1  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  (
( A  X.  B
)  =  ( C  X.  D )  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    =/= wne 2794    C_ wss 3574   (/)c0 3915    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  xpcan  5570  xpcan2  5571  fseqdom  8849  axcc2lem  9258  lmodfopnelem1  18899
  Copyright terms: Public domain W3C validator