MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colhp Structured version   Visualization version   Unicode version

Theorem colhp 25662
Description: Half-plane relation for colinear points. Theorem 9.19 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
Hypotheses
Ref Expression
hpgid.p  |-  P  =  ( Base `  G
)
hpgid.i  |-  I  =  (Itv `  G )
hpgid.l  |-  L  =  (LineG `  G )
hpgid.g  |-  ( ph  ->  G  e. TarskiG )
hpgid.d  |-  ( ph  ->  D  e.  ran  L
)
hpgid.a  |-  ( ph  ->  A  e.  P )
hpgid.o  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
colopp.b  |-  ( ph  ->  B  e.  P )
colopp.p  |-  ( ph  ->  C  e.  D )
colopp.1  |-  ( ph  ->  ( C  e.  ( A L B )  \/  A  =  B ) )
colhp.k  |-  K  =  (hlG `  G )
Assertion
Ref Expression
colhp  |-  ( ph  ->  ( A ( (hpG
`  G ) `  D ) B  <->  ( A
( K `  C
) B  /\  -.  A  e.  D )
) )
Distinct variable groups:    t, A    t, B    D, a, b, t    G, a, b, t    I,
a, b, t    O, a, b, t    P, a, b, t    ph, t    t, C    L, a, b, t    A, a, b    C, a, b
Allowed substitution hints:    ph( a, b)    B( a, b)    K( t, a, b)

Proof of Theorem colhp
StepHypRef Expression
1 ancom 466 . . 3  |-  ( ( A ( K `  C ) B  /\  -.  A  e.  D
)  <->  ( -.  A  e.  D  /\  A ( K `  C ) B ) )
21a1i 11 . 2  |-  ( ph  ->  ( ( A ( K `  C ) B  /\  -.  A  e.  D )  <->  ( -.  A  e.  D  /\  A ( K `  C ) B ) ) )
3 hpgid.p . . . . 5  |-  P  =  ( Base `  G
)
4 hpgid.i . . . . 5  |-  I  =  (Itv `  G )
5 hpgid.l . . . . 5  |-  L  =  (LineG `  G )
6 hpgid.g . . . . . 6  |-  ( ph  ->  G  e. TarskiG )
76adantr 481 . . . . 5  |-  ( (
ph  /\  -.  A  e.  D )  ->  G  e. TarskiG )
8 hpgid.d . . . . . 6  |-  ( ph  ->  D  e.  ran  L
)
98adantr 481 . . . . 5  |-  ( (
ph  /\  -.  A  e.  D )  ->  D  e.  ran  L )
10 colopp.b . . . . . 6  |-  ( ph  ->  B  e.  P )
1110adantr 481 . . . . 5  |-  ( (
ph  /\  -.  A  e.  D )  ->  B  e.  P )
12 hpgid.o . . . . 5  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
13 eqid 2622 . . . . . . 7  |-  ( dist `  G )  =  (
dist `  G )
14 eqid 2622 . . . . . . 7  |-  (pInvG `  G )  =  (pInvG `  G )
15 colopp.p . . . . . . . 8  |-  ( ph  ->  C  e.  D )
163, 5, 4, 6, 8, 15tglnpt 25444 . . . . . . 7  |-  ( ph  ->  C  e.  P )
17 eqid 2622 . . . . . . 7  |-  ( (pInvG `  G ) `  C
)  =  ( (pInvG `  G ) `  C
)
18 hpgid.a . . . . . . 7  |-  ( ph  ->  A  e.  P )
193, 13, 4, 5, 14, 6, 16, 17, 18mircl 25556 . . . . . 6  |-  ( ph  ->  ( ( (pInvG `  G ) `  C
) `  A )  e.  P )
2019adantr 481 . . . . 5  |-  ( (
ph  /\  -.  A  e.  D )  ->  (
( (pInvG `  G
) `  C ) `  A )  e.  P
)
2115adantr 481 . . . . 5  |-  ( (
ph  /\  -.  A  e.  D )  ->  C  e.  D )
2216adantr 481 . . . . . 6  |-  ( (
ph  /\  -.  A  e.  D )  ->  C  e.  P )
2318adantr 481 . . . . . . 7  |-  ( (
ph  /\  -.  A  e.  D )  ->  A  e.  P )
24 nelne2 2891 . . . . . . . . . . 11  |-  ( ( C  e.  D  /\  -.  A  e.  D
)  ->  C  =/=  A )
2515, 24sylan 488 . . . . . . . . . 10  |-  ( (
ph  /\  -.  A  e.  D )  ->  C  =/=  A )
2625necomd 2849 . . . . . . . . 9  |-  ( (
ph  /\  -.  A  e.  D )  ->  A  =/=  C )
2726neneqd 2799 . . . . . . . 8  |-  ( (
ph  /\  -.  A  e.  D )  ->  -.  A  =  C )
28 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  A  e.  D )  ->  -.  A  e.  D )
293, 13, 4, 5, 14, 6, 16, 17, 18mirmir 25557 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( (pInvG `  G ) `  C
) `  ( (
(pInvG `  G ) `  C ) `  A
) )  =  A )
3029adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( (
(pInvG `  G ) `  C ) `  A
)  e.  D )  ->  ( ( (pInvG `  G ) `  C
) `  ( (
(pInvG `  G ) `  C ) `  A
) )  =  A )
316adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( (
(pInvG `  G ) `  C ) `  A
)  e.  D )  ->  G  e. TarskiG )
328adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( (
(pInvG `  G ) `  C ) `  A
)  e.  D )  ->  D  e.  ran  L )
3315adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( (
(pInvG `  G ) `  C ) `  A
)  e.  D )  ->  C  e.  D
)
34 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( (
(pInvG `  G ) `  C ) `  A
)  e.  D )  ->  ( ( (pInvG `  G ) `  C
) `  A )  e.  D )
353, 13, 4, 5, 14, 31, 17, 32, 33, 34mirln 25571 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( (
(pInvG `  G ) `  C ) `  A
)  e.  D )  ->  ( ( (pInvG `  G ) `  C
) `  ( (
(pInvG `  G ) `  C ) `  A
) )  e.  D
)
3630, 35eqeltrrd 2702 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
(pInvG `  G ) `  C ) `  A
)  e.  D )  ->  A  e.  D
)
3736stoic1a 1697 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  A  e.  D )  ->  -.  ( ( (pInvG `  G ) `  C
) `  A )  e.  D )
38 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  t  =  C )  ->  t  =  C )
39 eqidd 2623 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  t  =  C )  ->  ( A I ( ( (pInvG `  G ) `  C ) `  A
) )  =  ( A I ( ( (pInvG `  G ) `  C ) `  A
) ) )
4038, 39eleq12d 2695 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  t  =  C )  ->  (
t  e.  ( A I ( ( (pInvG `  G ) `  C
) `  A )
)  <->  C  e.  ( A I ( ( (pInvG `  G ) `  C ) `  A
) ) ) )
413, 13, 4, 5, 14, 6, 16, 17, 18mirbtwn 25553 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  C  e.  ( ( ( (pInvG `  G
) `  C ) `  A ) I A ) )
423, 13, 4, 6, 19, 16, 18, 41tgbtwncom 25383 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  C  e.  ( A I ( ( (pInvG `  G ) `  C
) `  A )
) )
4315, 40, 42rspcedvd 3317 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  E. t  e.  D  t  e.  ( A I ( ( (pInvG `  G ) `  C
) `  A )
) )
4443adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  A  e.  D )  ->  E. t  e.  D  t  e.  ( A I ( ( (pInvG `  G ) `  C ) `  A
) ) )
4528, 37, 44jca31 557 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  A  e.  D )  ->  (
( -.  A  e.  D  /\  -.  (
( (pInvG `  G
) `  C ) `  A )  e.  D
)  /\  E. t  e.  D  t  e.  ( A I ( ( (pInvG `  G ) `  C ) `  A
) ) ) )
463, 13, 4, 12, 23, 20islnopp 25631 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  A  e.  D )  ->  ( A O ( ( (pInvG `  G ) `  C
) `  A )  <->  ( ( -.  A  e.  D  /\  -.  (
( (pInvG `  G
) `  C ) `  A )  e.  D
)  /\  E. t  e.  D  t  e.  ( A I ( ( (pInvG `  G ) `  C ) `  A
) ) ) ) )
4745, 46mpbird 247 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  -.  A  e.  D )  ->  A O ( ( (pInvG `  G ) `  C
) `  A )
)
483, 13, 4, 12, 5, 9, 7, 23, 20, 47oppne3 25635 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  A  e.  D )  ->  A  =/=  ( ( (pInvG `  G ) `  C
) `  A )
)
4942adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  A  e.  D )  ->  C  e.  ( A I ( ( (pInvG `  G
) `  C ) `  A ) ) )
503, 4, 5, 7, 23, 20, 22, 48, 49btwnlng1 25514 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  A  e.  D )  ->  C  e.  ( A L ( ( (pInvG `  G
) `  C ) `  A ) ) )
5150orcd 407 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  A  e.  D )  ->  ( C  e.  ( A L ( ( (pInvG `  G ) `  C
) `  A )
)  \/  A  =  ( ( (pInvG `  G ) `  C
) `  A )
) )
523, 5, 4, 7, 23, 20, 22, 51colcom 25453 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  A  e.  D )  ->  ( C  e.  ( (
( (pInvG `  G
) `  C ) `  A ) L A )  \/  ( ( (pInvG `  G ) `  C ) `  A
)  =  A ) )
533, 5, 4, 7, 20, 23, 22, 52colrot1 25454 . . . . . . . . . 10  |-  ( (
ph  /\  -.  A  e.  D )  ->  (
( ( (pInvG `  G ) `  C
) `  A )  e.  ( A L C )  \/  A  =  C ) )
5453orcomd 403 . . . . . . . . 9  |-  ( (
ph  /\  -.  A  e.  D )  ->  ( A  =  C  \/  ( ( (pInvG `  G ) `  C
) `  A )  e.  ( A L C ) ) )
5554ord 392 . . . . . . . 8  |-  ( (
ph  /\  -.  A  e.  D )  ->  ( -.  A  =  C  ->  ( ( (pInvG `  G ) `  C
) `  A )  e.  ( A L C ) ) )
5627, 55mpd 15 . . . . . . 7  |-  ( (
ph  /\  -.  A  e.  D )  ->  (
( (pInvG `  G
) `  C ) `  A )  e.  ( A L C ) )
57 colopp.1 . . . . . . . . . 10  |-  ( ph  ->  ( C  e.  ( A L B )  \/  A  =  B ) )
583, 5, 4, 6, 18, 10, 16, 57colrot1 25454 . . . . . . . . 9  |-  ( ph  ->  ( A  e.  ( B L C )  \/  B  =  C ) )
593, 5, 4, 6, 10, 16, 18, 58colcom 25453 . . . . . . . 8  |-  ( ph  ->  ( A  e.  ( C L B )  \/  C  =  B ) )
6059adantr 481 . . . . . . 7  |-  ( (
ph  /\  -.  A  e.  D )  ->  ( A  e.  ( C L B )  \/  C  =  B ) )
613, 4, 5, 7, 20, 23, 22, 11, 56, 60coltr 25542 . . . . . 6  |-  ( (
ph  /\  -.  A  e.  D )  ->  (
( ( (pInvG `  G ) `  C
) `  A )  e.  ( C L B )  \/  C  =  B ) )
623, 5, 4, 7, 22, 11, 20, 61colrot1 25454 . . . . 5  |-  ( (
ph  /\  -.  A  e.  D )  ->  ( C  e.  ( B L ( ( (pInvG `  G ) `  C
) `  A )
)  \/  B  =  ( ( (pInvG `  G ) `  C
) `  A )
) )
633, 4, 5, 7, 9, 11, 12, 20, 21, 62colopp 25661 . . . 4  |-  ( (
ph  /\  -.  A  e.  D )  ->  ( B O ( ( (pInvG `  G ) `  C
) `  A )  <->  ( C  e.  ( B I ( ( (pInvG `  G ) `  C
) `  A )
)  /\  -.  B  e.  D  /\  -.  (
( (pInvG `  G
) `  C ) `  A )  e.  D
) ) )
643, 4, 5, 12, 7, 9, 23, 11, 20, 47lnopp2hpgb 25655 . . . 4  |-  ( (
ph  /\  -.  A  e.  D )  ->  ( B O ( ( (pInvG `  G ) `  C
) `  A )  <->  A ( (hpG `  G
) `  D ) B ) )
65 colhp.k . . . . . . . . 9  |-  K  =  (hlG `  G )
66 simpll 790 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D )
)  ->  ph )
6766, 10syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D )
)  ->  B  e.  P )
6866, 18syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D )
)  ->  A  e.  P )
6966, 16syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D )
)  ->  C  e.  P )
7066, 6syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D )
)  ->  G  e. TarskiG )
7166, 15syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D )
)  ->  C  e.  D )
72 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D )
)  ->  -.  B  e.  D )
73 nelne2 2891 . . . . . . . . . . . 12  |-  ( ( C  e.  D  /\  -.  B  e.  D
)  ->  C  =/=  B )
7473necomd 2849 . . . . . . . . . . 11  |-  ( ( C  e.  D  /\  -.  B  e.  D
)  ->  B  =/=  C )
7571, 72, 74syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D )
)  ->  B  =/=  C )
7626adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D )
)  ->  A  =/=  C )
77 simprl 794 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D )
)  ->  C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) ) )
783, 13, 4, 5, 14, 70, 17, 65, 69, 67, 68, 68, 75, 76, 77mirhl2 25576 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D )
)  ->  B ( K `  C ) A )
793, 4, 65, 67, 68, 69, 70, 78hlcomd 25499 . . . . . . . 8  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D )
)  ->  A ( K `  C ) B )
8028adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D )
)  ->  -.  A  e.  D )
8179, 80jca 554 . . . . . . 7  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D )
)  ->  ( A
( K `  C
) B  /\  -.  A  e.  D )
)
82813adantr3 1222 . . . . . 6  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D  /\  -.  ( ( (pInvG `  G ) `  C
) `  A )  e.  D ) )  -> 
( A ( K `
 C ) B  /\  -.  A  e.  D ) )
8382simpld 475 . . . . 5  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  ( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D  /\  -.  ( ( (pInvG `  G ) `  C
) `  A )  e.  D ) )  ->  A ( K `  C ) B )
8423adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  A ( K `  C ) B )  ->  A  e.  P
)
8511adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  A ( K `  C ) B )  ->  B  e.  P
)
8620adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  A ( K `  C ) B )  ->  ( ( (pInvG `  G ) `  C
) `  A )  e.  P )
877adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  A ( K `  C ) B )  ->  G  e. TarskiG )
8816ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  A ( K `  C ) B )  ->  C  e.  P
)
89 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  A ( K `  C ) B )  ->  A ( K `
 C ) B )
9042ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  A ( K `  C ) B )  ->  C  e.  ( A I ( ( (pInvG `  G ) `  C ) `  A
) ) )
913, 4, 65, 84, 85, 86, 87, 88, 89, 90btwnhl 25509 . . . . . 6  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  A ( K `  C ) B )  ->  C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) ) )
923, 4, 65, 84, 85, 88, 87, 5, 89hlln 25502 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  A ( K `  C ) B )  ->  A  e.  ( B L C ) )
9392adantr 481 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  A ( K `  C ) B )  /\  B  e.  D )  ->  A  e.  ( B L C ) )
9487adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  A ( K `  C ) B )  /\  B  e.  D )  ->  G  e. TarskiG )
9585adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  A ( K `  C ) B )  /\  B  e.  D )  ->  B  e.  P )
9688adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  A ( K `  C ) B )  /\  B  e.  D )  ->  C  e.  P )
9784adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  A ( K `  C ) B )  /\  B  e.  D )  ->  A  e.  P )
9889adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  A ( K `  C ) B )  /\  B  e.  D )  ->  A
( K `  C
) B )
993, 4, 65, 97, 95, 96, 94, 98hlne2 25501 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  A ( K `  C ) B )  /\  B  e.  D )  ->  B  =/=  C )
1009ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  A ( K `  C ) B )  /\  B  e.  D )  ->  D  e.  ran  L )
101 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  A ( K `  C ) B )  /\  B  e.  D )  ->  B  e.  D )
10215ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  A ( K `  C ) B )  /\  B  e.  D )  ->  C  e.  D )
1033, 4, 5, 94, 95, 96, 99, 99, 100, 101, 102tglinethru 25531 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  A ( K `  C ) B )  /\  B  e.  D )  ->  D  =  ( B L C ) )
10493, 103eleqtrrd 2704 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  A ( K `  C ) B )  /\  B  e.  D )  ->  A  e.  D )
10528ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  A ( K `  C ) B )  /\  B  e.  D )  ->  -.  A  e.  D )
106104, 105pm2.65da 600 . . . . . 6  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  A ( K `  C ) B )  ->  -.  B  e.  D )
10737adantr 481 . . . . . 6  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  A ( K `  C ) B )  ->  -.  ( (
(pInvG `  G ) `  C ) `  A
)  e.  D )
10891, 106, 1073jca 1242 . . . . 5  |-  ( ( ( ph  /\  -.  A  e.  D )  /\  A ( K `  C ) B )  ->  ( C  e.  ( B I ( ( (pInvG `  G
) `  C ) `  A ) )  /\  -.  B  e.  D  /\  -.  ( ( (pInvG `  G ) `  C
) `  A )  e.  D ) )
10983, 108impbida 877 . . . 4  |-  ( (
ph  /\  -.  A  e.  D )  ->  (
( C  e.  ( B I ( ( (pInvG `  G ) `  C ) `  A
) )  /\  -.  B  e.  D  /\  -.  ( ( (pInvG `  G ) `  C
) `  A )  e.  D )  <->  A ( K `  C ) B ) )
11063, 64, 1093bitr3d 298 . . 3  |-  ( (
ph  /\  -.  A  e.  D )  ->  ( A ( (hpG `  G ) `  D
) B  <->  A ( K `  C ) B ) )
111110pm5.32da 673 . 2  |-  ( ph  ->  ( ( -.  A  e.  D  /\  A ( (hpG `  G ) `  D ) B )  <-> 
( -.  A  e.  D  /\  A ( K `  C ) B ) ) )
112 simpr 477 . . . 4  |-  ( (
ph  /\  A (
(hpG `  G ) `  D ) B )  ->  A ( (hpG
`  G ) `  D ) B )
113112adantrl 752 . . 3  |-  ( (
ph  /\  ( -.  A  e.  D  /\  A ( (hpG `  G ) `  D
) B ) )  ->  A ( (hpG
`  G ) `  D ) B )
1146adantr 481 . . . . 5  |-  ( (
ph  /\  A (
(hpG `  G ) `  D ) B )  ->  G  e. TarskiG )
1158adantr 481 . . . . 5  |-  ( (
ph  /\  A (
(hpG `  G ) `  D ) B )  ->  D  e.  ran  L )
11618adantr 481 . . . . 5  |-  ( (
ph  /\  A (
(hpG `  G ) `  D ) B )  ->  A  e.  P
)
11710adantr 481 . . . . 5  |-  ( (
ph  /\  A (
(hpG `  G ) `  D ) B )  ->  B  e.  P
)
1183, 4, 5, 12, 114, 115, 116, 117, 112hpgne1 25653 . . . 4  |-  ( (
ph  /\  A (
(hpG `  G ) `  D ) B )  ->  -.  A  e.  D )
119118, 112jca 554 . . 3  |-  ( (
ph  /\  A (
(hpG `  G ) `  D ) B )  ->  ( -.  A  e.  D  /\  A ( (hpG `  G ) `  D ) B ) )
120113, 119impbida 877 . 2  |-  ( ph  ->  ( ( -.  A  e.  D  /\  A ( (hpG `  G ) `  D ) B )  <-> 
A ( (hpG `  G ) `  D
) B ) )
1212, 111, 1203bitr2rd 297 1  |-  ( ph  ->  ( A ( (hpG
`  G ) `  D ) B  <->  ( A
( K `  C
) B  /\  -.  A  e.  D )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   class class class wbr 4653   {copab 4712   ran crn 5115   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  hlGchlg 25495  pInvGcmir 25547  hpGchpg 25649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-hlg 25496  df-mir 25548  df-rag 25589  df-perpg 25591  df-hpg 25650
This theorem is referenced by:  hphl  25663  trgcopy  25696
  Copyright terms: Public domain W3C validator