Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem22 Structured version   Visualization version   Unicode version

Theorem stoweidlem22 40239
Description: If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem22.8  |-  F/ t
ph
stoweidlem22.9  |-  F/_ t F
stoweidlem22.10  |-  F/_ t G
stoweidlem22.1  |-  H  =  ( t  e.  T  |->  ( ( F `  t )  -  ( G `  t )
) )
stoweidlem22.2  |-  I  =  ( t  e.  T  |-> 
-u 1 )
stoweidlem22.3  |-  L  =  ( t  e.  T  |->  ( ( I `  t )  x.  ( G `  t )
) )
stoweidlem22.4  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
stoweidlem22.5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem22.6  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem22.7  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
Assertion
Ref Expression
stoweidlem22  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  -  ( G `  t ) ) )  e.  A )
Distinct variable groups:    f, g,
t, A    f, F, g    f, G, g    f, I, g    T, f, g, t    ph, f, g    g, L    x, t, A    x, T    ph, x
Allowed substitution hints:    ph( t)    F( x, t)    G( x, t)    H( x, t, f, g)    I( x, t)    L( x, t, f)

Proof of Theorem stoweidlem22
StepHypRef Expression
1 stoweidlem22.8 . . . 4  |-  F/ t
ph
2 stoweidlem22.9 . . . . 5  |-  F/_ t F
32nfel1 2779 . . . 4  |-  F/ t  F  e.  A
4 stoweidlem22.10 . . . . 5  |-  F/_ t G
54nfel1 2779 . . . 4  |-  F/ t  G  e.  A
61, 3, 5nf3an 1831 . . 3  |-  F/ t ( ph  /\  F  e.  A  /\  G  e.  A )
7 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  t  e.  T )
8 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ph )
9 stoweidlem22.2 . . . . . . . . . . . 12  |-  I  =  ( t  e.  T  |-> 
-u 1 )
10 neg1rr 11125 . . . . . . . . . . . . 13  |-  -u 1  e.  RR
11 stoweidlem22.7 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
1211stoweidlem4 40221 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -u 1  e.  RR )  ->  (
t  e.  T  |->  -u
1 )  e.  A
)
1310, 12mpan2 707 . . . . . . . . . . . 12  |-  ( ph  ->  ( t  e.  T  |-> 
-u 1 )  e.  A )
149, 13syl5eqel 2705 . . . . . . . . . . 11  |-  ( ph  ->  I  e.  A )
15 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( f  =  I  ->  (
f  e.  A  <->  I  e.  A ) )
1615anbi2d 740 . . . . . . . . . . . . . 14  |-  ( f  =  I  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  I  e.  A ) ) )
17 feq1 6026 . . . . . . . . . . . . . 14  |-  ( f  =  I  ->  (
f : T --> RR  <->  I : T
--> RR ) )
1816, 17imbi12d 334 . . . . . . . . . . . . 13  |-  ( f  =  I  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  I  e.  A )  ->  I : T --> RR ) ) )
19 stoweidlem22.4 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
2018, 19vtoclg 3266 . . . . . . . . . . . 12  |-  ( I  e.  A  ->  (
( ph  /\  I  e.  A )  ->  I : T --> RR ) )
2120anabsi7 860 . . . . . . . . . . 11  |-  ( (
ph  /\  I  e.  A )  ->  I : T --> RR )
2214, 21mpdan 702 . . . . . . . . . 10  |-  ( ph  ->  I : T --> RR )
238, 22syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  I : T --> RR )
2423, 7ffvelrnd 6360 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  (
I `  t )  e.  RR )
25 simpl3 1066 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  G  e.  A )
26 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( f  =  G  ->  (
f  e.  A  <->  G  e.  A ) )
2726anbi2d 740 . . . . . . . . . . . . . 14  |-  ( f  =  G  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  G  e.  A ) ) )
28 feq1 6026 . . . . . . . . . . . . . 14  |-  ( f  =  G  ->  (
f : T --> RR  <->  G : T
--> RR ) )
2927, 28imbi12d 334 . . . . . . . . . . . . 13  |-  ( f  =  G  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  G  e.  A )  ->  G : T --> RR ) ) )
3029, 19vtoclg 3266 . . . . . . . . . . . 12  |-  ( G  e.  A  ->  (
( ph  /\  G  e.  A )  ->  G : T --> RR ) )
3130anabsi7 860 . . . . . . . . . . 11  |-  ( (
ph  /\  G  e.  A )  ->  G : T --> RR )
32313adant3 1081 . . . . . . . . . 10  |-  ( (
ph  /\  G  e.  A  /\  t  e.  T
)  ->  G : T
--> RR )
33 simp3 1063 . . . . . . . . . 10  |-  ( (
ph  /\  G  e.  A  /\  t  e.  T
)  ->  t  e.  T )
3432, 33ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  G  e.  A  /\  t  e.  T
)  ->  ( G `  t )  e.  RR )
358, 25, 7, 34syl3anc 1326 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ( G `  t )  e.  RR )
3624, 35remulcld 10070 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  (
( I `  t
)  x.  ( G `
 t ) )  e.  RR )
37 stoweidlem22.3 . . . . . . . 8  |-  L  =  ( t  e.  T  |->  ( ( I `  t )  x.  ( G `  t )
) )
3837fvmpt2 6291 . . . . . . 7  |-  ( ( t  e.  T  /\  ( ( I `  t )  x.  ( G `  t )
)  e.  RR )  ->  ( L `  t )  =  ( ( I `  t
)  x.  ( G `
 t ) ) )
397, 36, 38syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ( L `  t )  =  ( ( I `
 t )  x.  ( G `  t
) ) )
409fvmpt2 6291 . . . . . . . . 9  |-  ( ( t  e.  T  /\  -u 1  e.  RR )  ->  ( I `  t )  =  -u
1 )
4110, 40mpan2 707 . . . . . . . 8  |-  ( t  e.  T  ->  (
I `  t )  =  -u 1 )
4241adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  (
I `  t )  =  -u 1 )
4342oveq1d 6665 . . . . . 6  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  (
( I `  t
)  x.  ( G `
 t ) )  =  ( -u 1  x.  ( G `  t
) ) )
4435recnd 10068 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ( G `  t )  e.  CC )
4544mulm1d 10482 . . . . . 6  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ( -u 1  x.  ( G `
 t ) )  =  -u ( G `  t ) )
4639, 43, 453eqtrd 2660 . . . . 5  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ( L `  t )  =  -u ( G `  t ) )
4746oveq2d 6666 . . . 4  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  (
( F `  t
)  +  ( L `
 t ) )  =  ( ( F `
 t )  + 
-u ( G `  t ) ) )
48 simpl2 1065 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  F  e.  A )
49 eleq1 2689 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f  e.  A  <->  F  e.  A ) )
5049anbi2d 740 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  F  e.  A ) ) )
51 feq1 6026 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
f : T --> RR  <->  F : T
--> RR ) )
5250, 51imbi12d 334 . . . . . . . . . 10  |-  ( f  =  F  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  F  e.  A )  ->  F : T --> RR ) ) )
5352, 19vtoclg 3266 . . . . . . . . 9  |-  ( F  e.  A  ->  (
( ph  /\  F  e.  A )  ->  F : T --> RR ) )
5453anabsi7 860 . . . . . . . 8  |-  ( (
ph  /\  F  e.  A )  ->  F : T --> RR )
558, 48, 54syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  F : T --> RR )
5655, 7ffvelrnd 6360 . . . . . 6  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
5756recnd 10068 . . . . 5  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  ( F `  t )  e.  CC )
5857, 44negsubd 10398 . . . 4  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  (
( F `  t
)  +  -u ( G `  t )
)  =  ( ( F `  t )  -  ( G `  t ) ) )
5947, 58eqtr2d 2657 . . 3  |-  ( ( ( ph  /\  F  e.  A  /\  G  e.  A )  /\  t  e.  T )  ->  (
( F `  t
)  -  ( G `
 t ) )  =  ( ( F `
 t )  +  ( L `  t
) ) )
606, 59mpteq2da 4743 . 2  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  -  ( G `  t ) ) )  =  ( t  e.  T  |->  ( ( F `
 t )  +  ( L `  t
) ) ) )
61143ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  I  e.  A )
62 nfmpt1 4747 . . . . . . . 8  |-  F/_ t
( t  e.  T  |-> 
-u 1 )
639, 62nfcxfr 2762 . . . . . . 7  |-  F/_ t
I
6463nfeq2 2780 . . . . . 6  |-  F/ t  f  =  I
654nfeq2 2780 . . . . . 6  |-  F/ t  g  =  G
66 stoweidlem22.6 . . . . . 6  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
6764, 65, 66stoweidlem6 40223 . . . . 5  |-  ( (
ph  /\  I  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( I `  t )  x.  ( G `  t ) ) )  e.  A )
6861, 67syld3an2 1373 . . . 4  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( I `  t )  x.  ( G `  t ) ) )  e.  A )
6937, 68syl5eqel 2705 . . 3  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  L  e.  A )
70 stoweidlem22.5 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
71 nfmpt1 4747 . . . . 5  |-  F/_ t
( t  e.  T  |->  ( ( I `  t )  x.  ( G `  t )
) )
7237, 71nfcxfr 2762 . . . 4  |-  F/_ t L
7370, 2, 72stoweidlem8 40225 . . 3  |-  ( (
ph  /\  F  e.  A  /\  L  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( L `  t ) ) )  e.  A )
7469, 73syld3an3 1371 . 2  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( L `  t ) ) )  e.  A )
7560, 74eqeltrd 2701 1  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  -  ( G `  t ) ) )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269
This theorem is referenced by:  stoweidlem33  40250
  Copyright terms: Public domain W3C validator