Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem23 Structured version   Visualization version   Unicode version

Theorem stoweidlem23 40240
Description: This lemma is used to prove the existence of a function pt as in the beginning of Lemma 1 [BrosowskiDeutsh] p. 90: for all t in T - U, there exists a function p in the subalgebra, such that pt ( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem23.1  |-  F/ t
ph
stoweidlem23.2  |-  F/_ t G
stoweidlem23.3  |-  H  =  ( t  e.  T  |->  ( ( G `  t )  -  ( G `  Z )
) )
stoweidlem23.4  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
stoweidlem23.5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem23.6  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem23.7  |-  ( ph  ->  S  e.  T )
stoweidlem23.8  |-  ( ph  ->  Z  e.  T )
stoweidlem23.9  |-  ( ph  ->  G  e.  A )
stoweidlem23.10  |-  ( ph  ->  ( G `  S
)  =/=  ( G `
 Z ) )
Assertion
Ref Expression
stoweidlem23  |-  ( ph  ->  ( H  e.  A  /\  ( H `  S
)  =/=  ( H `
 Z )  /\  ( H `  Z )  =  0 ) )
Distinct variable groups:    f, g,
t, T    A, f,
g    f, G, g    ph, f,
g    g, Z, t    x, t, T    t, S    x, A    x, G    x, Z    ph, x
Allowed substitution hints:    ph( t)    A( t)    S( x, f, g)    G( t)    H( x, t, f, g)    Z( f)

Proof of Theorem stoweidlem23
StepHypRef Expression
1 stoweidlem23.3 . . 3  |-  H  =  ( t  e.  T  |->  ( ( G `  t )  -  ( G `  Z )
) )
2 stoweidlem23.1 . . . . 5  |-  F/ t
ph
3 stoweidlem23.9 . . . . . . . . 9  |-  ( ph  ->  G  e.  A )
43ancli 574 . . . . . . . . 9  |-  ( ph  ->  ( ph  /\  G  e.  A ) )
5 eleq1 2689 . . . . . . . . . . . 12  |-  ( f  =  G  ->  (
f  e.  A  <->  G  e.  A ) )
65anbi2d 740 . . . . . . . . . . 11  |-  ( f  =  G  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  G  e.  A ) ) )
7 feq1 6026 . . . . . . . . . . 11  |-  ( f  =  G  ->  (
f : T --> RR  <->  G : T
--> RR ) )
86, 7imbi12d 334 . . . . . . . . . 10  |-  ( f  =  G  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  G  e.  A )  ->  G : T --> RR ) ) )
9 stoweidlem23.4 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
108, 9vtoclg 3266 . . . . . . . . 9  |-  ( G  e.  A  ->  (
( ph  /\  G  e.  A )  ->  G : T --> RR ) )
113, 4, 10sylc 65 . . . . . . . 8  |-  ( ph  ->  G : T --> RR )
1211ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( G `  t )  e.  RR )
1312recnd 10068 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( G `  t )  e.  CC )
14 stoweidlem23.8 . . . . . . . . 9  |-  ( ph  ->  Z  e.  T )
1511, 14ffvelrnd 6360 . . . . . . . 8  |-  ( ph  ->  ( G `  Z
)  e.  RR )
1615adantr 481 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( G `  Z )  e.  RR )
1716recnd 10068 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( G `  Z )  e.  CC )
1813, 17negsubd 10398 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  (
( G `  t
)  +  -u ( G `  Z )
)  =  ( ( G `  t )  -  ( G `  Z ) ) )
192, 18mpteq2da 4743 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  ( ( G `  t )  +  -u ( G `  Z ) ) )  =  ( t  e.  T  |->  ( ( G `  t
)  -  ( G `
 Z ) ) ) )
20 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  T )
2115renegcld 10457 . . . . . . . . 9  |-  ( ph  -> 
-u ( G `  Z )  e.  RR )
2221adantr 481 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  -u ( G `  Z )  e.  RR )
23 eqid 2622 . . . . . . . . 9  |-  ( t  e.  T  |->  -u ( G `  Z )
)  =  ( t  e.  T  |->  -u ( G `  Z )
)
2423fvmpt2 6291 . . . . . . . 8  |-  ( ( t  e.  T  /\  -u ( G `  Z
)  e.  RR )  ->  ( ( t  e.  T  |->  -u ( G `  Z )
) `  t )  =  -u ( G `  Z ) )
2520, 22, 24syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  (
( t  e.  T  |-> 
-u ( G `  Z ) ) `  t )  =  -u ( G `  Z ) )
2625oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  (
( G `  t
)  +  ( ( t  e.  T  |->  -u ( G `  Z ) ) `  t ) )  =  ( ( G `  t )  +  -u ( G `  Z ) ) )
272, 26mpteq2da 4743 . . . . 5  |-  ( ph  ->  ( t  e.  T  |->  ( ( G `  t )  +  ( ( t  e.  T  |-> 
-u ( G `  Z ) ) `  t ) ) )  =  ( t  e.  T  |->  ( ( G `
 t )  + 
-u ( G `  Z ) ) ) )
2821ancli 574 . . . . . . 7  |-  ( ph  ->  ( ph  /\  -u ( G `  Z )  e.  RR ) )
29 eleq1 2689 . . . . . . . . . 10  |-  ( x  =  -u ( G `  Z )  ->  (
x  e.  RR  <->  -u ( G `
 Z )  e.  RR ) )
3029anbi2d 740 . . . . . . . . 9  |-  ( x  =  -u ( G `  Z )  ->  (
( ph  /\  x  e.  RR )  <->  ( ph  /\  -u ( G `  Z
)  e.  RR ) ) )
31 stoweidlem23.2 . . . . . . . . . . . . . 14  |-  F/_ t G
32 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ t Z
3331, 32nffv 6198 . . . . . . . . . . . . 13  |-  F/_ t
( G `  Z
)
3433nfneg 10277 . . . . . . . . . . . 12  |-  F/_ t -u ( G `  Z
)
3534nfeq2 2780 . . . . . . . . . . 11  |-  F/ t  x  =  -u ( G `  Z )
36 simpl 473 . . . . . . . . . . 11  |-  ( ( x  =  -u ( G `  Z )  /\  t  e.  T
)  ->  x  =  -u ( G `  Z
) )
3735, 36mpteq2da 4743 . . . . . . . . . 10  |-  ( x  =  -u ( G `  Z )  ->  (
t  e.  T  |->  x )  =  ( t  e.  T  |->  -u ( G `  Z )
) )
3837eleq1d 2686 . . . . . . . . 9  |-  ( x  =  -u ( G `  Z )  ->  (
( t  e.  T  |->  x )  e.  A  <->  ( t  e.  T  |->  -u ( G `  Z ) )  e.  A ) )
3930, 38imbi12d 334 . . . . . . . 8  |-  ( x  =  -u ( G `  Z )  ->  (
( ( ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A
)  <->  ( ( ph  /\  -u ( G `  Z
)  e.  RR )  ->  ( t  e.  T  |->  -u ( G `  Z ) )  e.  A ) ) )
40 stoweidlem23.6 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
4139, 40vtoclg 3266 . . . . . . 7  |-  ( -u ( G `  Z )  e.  RR  ->  (
( ph  /\  -u ( G `  Z )  e.  RR )  ->  (
t  e.  T  |->  -u ( G `  Z ) )  e.  A ) )
4221, 28, 41sylc 65 . . . . . 6  |-  ( ph  ->  ( t  e.  T  |-> 
-u ( G `  Z ) )  e.  A )
43 stoweidlem23.5 . . . . . . 7  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
44 nfmpt1 4747 . . . . . . 7  |-  F/_ t
( t  e.  T  |-> 
-u ( G `  Z ) )
4543, 31, 44stoweidlem8 40225 . . . . . 6  |-  ( (
ph  /\  G  e.  A  /\  ( t  e.  T  |->  -u ( G `  Z ) )  e.  A )  ->  (
t  e.  T  |->  ( ( G `  t
)  +  ( ( t  e.  T  |->  -u ( G `  Z ) ) `  t ) ) )  e.  A
)
463, 42, 45mpd3an23 1426 . . . . 5  |-  ( ph  ->  ( t  e.  T  |->  ( ( G `  t )  +  ( ( t  e.  T  |-> 
-u ( G `  Z ) ) `  t ) ) )  e.  A )
4727, 46eqeltrrd 2702 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  ( ( G `  t )  +  -u ( G `  Z ) ) )  e.  A
)
4819, 47eqeltrrd 2702 . . 3  |-  ( ph  ->  ( t  e.  T  |->  ( ( G `  t )  -  ( G `  Z )
) )  e.  A
)
491, 48syl5eqel 2705 . 2  |-  ( ph  ->  H  e.  A )
50 stoweidlem23.7 . . . . . 6  |-  ( ph  ->  S  e.  T )
5111, 50ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( G `  S
)  e.  RR )
5251recnd 10068 . . . 4  |-  ( ph  ->  ( G `  S
)  e.  CC )
5315recnd 10068 . . . 4  |-  ( ph  ->  ( G `  Z
)  e.  CC )
54 stoweidlem23.10 . . . 4  |-  ( ph  ->  ( G `  S
)  =/=  ( G `
 Z ) )
5552, 53, 54subne0d 10401 . . 3  |-  ( ph  ->  ( ( G `  S )  -  ( G `  Z )
)  =/=  0 )
5651, 15resubcld 10458 . . . 4  |-  ( ph  ->  ( ( G `  S )  -  ( G `  Z )
)  e.  RR )
57 nfcv 2764 . . . . 5  |-  F/_ t S
5831, 57nffv 6198 . . . . . 6  |-  F/_ t
( G `  S
)
59 nfcv 2764 . . . . . 6  |-  F/_ t  -
6058, 59, 33nfov 6676 . . . . 5  |-  F/_ t
( ( G `  S )  -  ( G `  Z )
)
61 fveq2 6191 . . . . . 6  |-  ( t  =  S  ->  ( G `  t )  =  ( G `  S ) )
6261oveq1d 6665 . . . . 5  |-  ( t  =  S  ->  (
( G `  t
)  -  ( G `
 Z ) )  =  ( ( G `
 S )  -  ( G `  Z ) ) )
6357, 60, 62, 1fvmptf 6301 . . . 4  |-  ( ( S  e.  T  /\  ( ( G `  S )  -  ( G `  Z )
)  e.  RR )  ->  ( H `  S )  =  ( ( G `  S
)  -  ( G `
 Z ) ) )
6450, 56, 63syl2anc 693 . . 3  |-  ( ph  ->  ( H `  S
)  =  ( ( G `  S )  -  ( G `  Z ) ) )
6515, 15resubcld 10458 . . . . 5  |-  ( ph  ->  ( ( G `  Z )  -  ( G `  Z )
)  e.  RR )
6633, 59, 33nfov 6676 . . . . . 6  |-  F/_ t
( ( G `  Z )  -  ( G `  Z )
)
67 fveq2 6191 . . . . . . 7  |-  ( t  =  Z  ->  ( G `  t )  =  ( G `  Z ) )
6867oveq1d 6665 . . . . . 6  |-  ( t  =  Z  ->  (
( G `  t
)  -  ( G `
 Z ) )  =  ( ( G `
 Z )  -  ( G `  Z ) ) )
6932, 66, 68, 1fvmptf 6301 . . . . 5  |-  ( ( Z  e.  T  /\  ( ( G `  Z )  -  ( G `  Z )
)  e.  RR )  ->  ( H `  Z )  =  ( ( G `  Z
)  -  ( G `
 Z ) ) )
7014, 65, 69syl2anc 693 . . . 4  |-  ( ph  ->  ( H `  Z
)  =  ( ( G `  Z )  -  ( G `  Z ) ) )
7153subidd 10380 . . . 4  |-  ( ph  ->  ( ( G `  Z )  -  ( G `  Z )
)  =  0 )
7270, 71eqtrd 2656 . . 3  |-  ( ph  ->  ( H `  Z
)  =  0 )
7355, 64, 723netr4d 2871 . 2  |-  ( ph  ->  ( H `  S
)  =/=  ( H `
 Z ) )
7449, 73, 723jca 1242 1  |-  ( ph  ->  ( H  e.  A  /\  ( H `  S
)  =/=  ( H `
 Z )  /\  ( H `  Z )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751    =/= wne 2794    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    + caddc 9939    - cmin 10266   -ucneg 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269
This theorem is referenced by:  stoweidlem43  40260
  Copyright terms: Public domain W3C validator