Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem7 Structured version   Visualization version   Unicode version

Theorem stoweidlem7 40224
Description: This lemma is used to prove that qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91, (at the top of page 91), is such that qn < ε on  T  \  U, and qn > 1 - ε on  V. Here it is proven that, for  n large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable  A is used to represent (k*δ) in the paper, and  B is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem7.1  |-  F  =  ( i  e.  NN0  |->  ( ( 1  /  A ) ^ i
) )
stoweidlem7.2  |-  G  =  ( i  e.  NN0  |->  ( B ^ i ) )
stoweidlem7.3  |-  ( ph  ->  A  e.  RR )
stoweidlem7.4  |-  ( ph  ->  1  <  A )
stoweidlem7.5  |-  ( ph  ->  B  e.  RR+ )
stoweidlem7.6  |-  ( ph  ->  B  <  1 )
stoweidlem7.7  |-  ( ph  ->  E  e.  RR+ )
Assertion
Ref Expression
stoweidlem7  |-  ( ph  ->  E. n  e.  NN  ( ( 1  -  E )  <  (
1  -  ( B ^ n ) )  /\  ( 1  / 
( A ^ n
) )  <  E
) )
Distinct variable groups:    i, n, A    B, i, n    i, E, n    ph, i, n   
n, F    n, G
Allowed substitution hints:    F( i)    G( i)

Proof of Theorem stoweidlem7
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 11408 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
3 stoweidlem7.7 . . . . 5  |-  ( ph  ->  E  e.  RR+ )
4 stoweidlem7.2 . . . . . . 7  |-  G  =  ( i  e.  NN0  |->  ( B ^ i ) )
54a1i 11 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  G  =  ( i  e.  NN0  |->  ( B ^ i ) ) )
6 oveq2 6658 . . . . . . 7  |-  ( i  =  k  ->  ( B ^ i )  =  ( B ^ k
) )
76adantl 482 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  i  =  k )  -> 
( B ^ i
)  =  ( B ^ k ) )
8 nnnn0 11299 . . . . . . 7  |-  ( k  e.  NN  ->  k  e.  NN0 )
98adantl 482 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  k  e. 
NN0 )
10 stoweidlem7.5 . . . . . . . . 9  |-  ( ph  ->  B  e.  RR+ )
1110rpcnd 11874 . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
1211adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  B  e.  CC )
1312, 9expcld 13008 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( B ^ k )  e.  CC )
145, 7, 9, 13fvmptd 6288 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  ( B ^ k
) )
15 1red 10055 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
1615renegcld 10457 . . . . . . . . 9  |-  ( ph  -> 
-u 1  e.  RR )
17 0red 10041 . . . . . . . . 9  |-  ( ph  ->  0  e.  RR )
1810rpred 11872 . . . . . . . . 9  |-  ( ph  ->  B  e.  RR )
19 neg1lt0 11127 . . . . . . . . . 10  |-  -u 1  <  0
2019a1i 11 . . . . . . . . 9  |-  ( ph  -> 
-u 1  <  0
)
2110rpgt0d 11875 . . . . . . . . 9  |-  ( ph  ->  0  <  B )
2216, 17, 18, 20, 21lttrd 10198 . . . . . . . 8  |-  ( ph  -> 
-u 1  <  B
)
23 stoweidlem7.6 . . . . . . . 8  |-  ( ph  ->  B  <  1 )
2418, 15absltd 14168 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  B
)  <  1  <->  ( -u 1  <  B  /\  B  <  1 ) ) )
2522, 23, 24mpbir2and 957 . . . . . . 7  |-  ( ph  ->  ( abs `  B
)  <  1 )
2611, 25expcnv 14596 . . . . . 6  |-  ( ph  ->  ( i  e.  NN0  |->  ( B ^ i ) )  ~~>  0 )
274, 26syl5eqbr 4688 . . . . 5  |-  ( ph  ->  G  ~~>  0 )
281, 2, 3, 14, 27climi 14241 . . . 4  |-  ( ph  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E ) )
29 r19.26 3064 . . . . . . . . . . . . . 14  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E )  <->  ( A. k  e.  ( ZZ>= `  n ) ( B ^ k )  e.  CC  /\  A. k  e.  ( ZZ>= `  n )
( abs `  (
( B ^ k
)  -  0 ) )  <  E ) )
3029simprbi 480 . . . . . . . . . . . . 13  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E )  ->  A. k  e.  ( ZZ>= `  n )
( abs `  (
( B ^ k
)  -  0 ) )  <  E )
3130ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  A. k  e.  (
ZZ>= `  n ) ( abs `  ( ( B ^ k )  -  0 ) )  <  E )
32 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( k  =  i  ->  ( B ^ k )  =  ( B ^ i
) )
3332oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( k  =  i  ->  (
( B ^ k
)  -  0 )  =  ( ( B ^ i )  - 
0 ) )
3433fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( k  =  i  ->  ( abs `  ( ( B ^ k )  - 
0 ) )  =  ( abs `  (
( B ^ i
)  -  0 ) ) )
3534breq1d 4663 . . . . . . . . . . . . 13  |-  ( k  =  i  ->  (
( abs `  (
( B ^ k
)  -  0 ) )  <  E  <->  ( abs `  ( ( B ^
i )  -  0 ) )  <  E
) )
3635rspccva 3308 . . . . . . . . . . . 12  |-  ( ( A. k  e.  (
ZZ>= `  n ) ( abs `  ( ( B ^ k )  -  0 ) )  <  E  /\  i  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( B ^
i )  -  0 ) )  <  E
)
3731, 36sylancom 701 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( abs `  (
( B ^ i
)  -  0 ) )  <  E )
38 simplll 798 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ph )
3938, 10syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  B  e.  RR+ )
4039rpred 11872 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  B  e.  RR )
41 simpllr 799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  n  e.  NN )
42 nnnn0 11299 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  NN0 )
4341, 42syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  n  e.  NN0 )
44 eluznn0 11757 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN0  /\  i  e.  ( ZZ>= `  n ) )  -> 
i  e.  NN0 )
4543, 44sylancom 701 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  i  e.  NN0 )
4640, 45reexpcld 13025 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( B ^
i )  e.  RR )
47 rpre 11839 . . . . . . . . . . . . 13  |-  ( E  e.  RR+  ->  E  e.  RR )
4838, 3, 473syl 18 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  E  e.  RR )
49 recn 10026 . . . . . . . . . . . . . . . . 17  |-  ( ( B ^ i )  e.  RR  ->  ( B ^ i )  e.  CC )
5049subid1d 10381 . . . . . . . . . . . . . . . 16  |-  ( ( B ^ i )  e.  RR  ->  (
( B ^ i
)  -  0 )  =  ( B ^
i ) )
5150adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( B ^ i
)  e.  RR  /\  E  e.  RR )  ->  ( ( B ^
i )  -  0 )  =  ( B ^ i ) )
5251fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( B ^ i
)  e.  RR  /\  E  e.  RR )  ->  ( abs `  (
( B ^ i
)  -  0 ) )  =  ( abs `  ( B ^ i
) ) )
5352breq1d 4663 . . . . . . . . . . . . 13  |-  ( ( ( B ^ i
)  e.  RR  /\  E  e.  RR )  ->  ( ( abs `  (
( B ^ i
)  -  0 ) )  <  E  <->  ( abs `  ( B ^ i
) )  <  E
) )
54 abslt 14054 . . . . . . . . . . . . 13  |-  ( ( ( B ^ i
)  e.  RR  /\  E  e.  RR )  ->  ( ( abs `  ( B ^ i ) )  <  E  <->  ( -u E  <  ( B ^ i
)  /\  ( B ^ i )  < 
E ) ) )
5553, 54bitrd 268 . . . . . . . . . . . 12  |-  ( ( ( B ^ i
)  e.  RR  /\  E  e.  RR )  ->  ( ( abs `  (
( B ^ i
)  -  0 ) )  <  E  <->  ( -u E  <  ( B ^ i
)  /\  ( B ^ i )  < 
E ) ) )
5646, 48, 55syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( ( abs `  ( ( B ^
i )  -  0 ) )  <  E  <->  (
-u E  <  ( B ^ i )  /\  ( B ^ i )  <  E ) ) )
5737, 56mpbid 222 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( -u E  <  ( B ^ i
)  /\  ( B ^ i )  < 
E ) )
5857simprd 479 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( B ^
i )  <  E
)
59 eluznn 11758 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  i  e.  ( ZZ>= `  n ) )  -> 
i  e.  NN )
6041, 59sylancom 701 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  i  e.  NN )
6118adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  NN )  ->  B  e.  RR )
62 nnnn0 11299 . . . . . . . . . . . . 13  |-  ( i  e.  NN  ->  i  e.  NN0 )
6362adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  NN )  ->  i  e. 
NN0 )
6461, 63reexpcld 13025 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  NN )  ->  ( B ^ i )  e.  RR )
653rpred 11872 . . . . . . . . . . . 12  |-  ( ph  ->  E  e.  RR )
6665adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  NN )  ->  E  e.  RR )
67 1red 10055 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  NN )  ->  1  e.  RR )
6864, 66, 67ltsub2d 10637 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( B ^ i )  <  E  <->  ( 1  -  E )  < 
( 1  -  ( B ^ i ) ) ) )
6938, 60, 68syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( ( B ^ i )  < 
E  <->  ( 1  -  E )  <  (
1  -  ( B ^ i ) ) ) )
7058, 69mpbid 222 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  (
ZZ>= `  n ) ( ( B ^ k
)  e.  CC  /\  ( abs `  ( ( B ^ k )  -  0 ) )  <  E ) )  /\  i  e.  (
ZZ>= `  n ) )  ->  ( 1  -  E )  <  (
1  -  ( B ^ i ) ) )
7170ralrimiva 2966 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E ) )  ->  A. i  e.  ( ZZ>=
`  n ) ( 1  -  E )  <  ( 1  -  ( B ^ i
) ) )
7232oveq2d 6666 . . . . . . . . 9  |-  ( k  =  i  ->  (
1  -  ( B ^ k ) )  =  ( 1  -  ( B ^ i
) ) )
7372breq2d 4665 . . . . . . . 8  |-  ( k  =  i  ->  (
( 1  -  E
)  <  ( 1  -  ( B ^
k ) )  <->  ( 1  -  E )  < 
( 1  -  ( B ^ i ) ) ) )
7473cbvralv 3171 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  n ) ( 1  -  E )  < 
( 1  -  ( B ^ k ) )  <->  A. i  e.  ( ZZ>=
`  n ) ( 1  -  E )  <  ( 1  -  ( B ^ i
) ) )
7571, 74sylibr 224 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E ) )  ->  A. k  e.  ( ZZ>=
`  n ) ( 1  -  E )  <  ( 1  -  ( B ^ k
) ) )
7675ex 450 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( ( B ^ k )  e.  CC  /\  ( abs `  ( ( B ^ k )  - 
0 ) )  < 
E )  ->  A. k  e.  ( ZZ>= `  n )
( 1  -  E
)  <  ( 1  -  ( B ^
k ) ) ) )
7776reximdva 3017 . . . 4  |-  ( ph  ->  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( B ^
k )  e.  CC  /\  ( abs `  (
( B ^ k
)  -  0 ) )  <  E )  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( 1  -  E )  < 
( 1  -  ( B ^ k ) ) ) )
7828, 77mpd 15 . . 3  |-  ( ph  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( 1  -  E )  < 
( 1  -  ( B ^ k ) ) )
79 stoweidlem7.1 . . . . . . 7  |-  F  =  ( i  e.  NN0  |->  ( ( 1  /  A ) ^ i
) )
8079a1i 11 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  F  =  ( i  e.  NN0  |->  ( ( 1  /  A ) ^ i
) ) )
81 oveq2 6658 . . . . . . 7  |-  ( i  =  k  ->  (
( 1  /  A
) ^ i )  =  ( ( 1  /  A ) ^
k ) )
8281adantl 482 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  i  =  k )  -> 
( ( 1  /  A ) ^ i
)  =  ( ( 1  /  A ) ^ k ) )
83 stoweidlem7.3 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
8483recnd 10068 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
85 0lt1 10550 . . . . . . . . . . . 12  |-  0  <  1
8685a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  0  <  1 )
87 stoweidlem7.4 . . . . . . . . . . 11  |-  ( ph  ->  1  <  A )
8817, 15, 83, 86, 87lttrd 10198 . . . . . . . . . 10  |-  ( ph  ->  0  <  A )
8988gt0ne0d 10592 . . . . . . . . 9  |-  ( ph  ->  A  =/=  0 )
9084, 89reccld 10794 . . . . . . . 8  |-  ( ph  ->  ( 1  /  A
)  e.  CC )
9190adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  A )  e.  CC )
9291, 9expcld 13008 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  A ) ^ k )  e.  CC )
9380, 82, 9, 92fvmptd 6288 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( 1  /  A ) ^ k
) )
9483, 89rereccld 10852 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
9583, 88recgt0d 10958 . . . . . . . . 9  |-  ( ph  ->  0  <  ( 1  /  A ) )
9616, 17, 94, 20, 95lttrd 10198 . . . . . . . 8  |-  ( ph  -> 
-u 1  <  (
1  /  A ) )
97 ltdiv23 10914 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( A  e.  RR  /\  0  <  A )  /\  ( 1  e.  RR  /\  0  <  1 ) )  -> 
( ( 1  /  A )  <  1  <->  ( 1  /  1 )  <  A ) )
9815, 83, 88, 15, 86, 97syl122anc 1335 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  /  A )  <  1  <->  ( 1  /  1 )  <  A ) )
99 1cnd 10056 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
10099div1d 10793 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  /  1
)  =  1 )
101100breq1d 4663 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  / 
1 )  <  A  <->  1  <  A ) )
10298, 101bitrd 268 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  /  A )  <  1  <->  1  <  A ) )
10387, 102mpbird 247 . . . . . . . 8  |-  ( ph  ->  ( 1  /  A
)  <  1 )
10494, 15absltd 14168 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  (
1  /  A ) )  <  1  <->  ( -u 1  <  ( 1  /  A )  /\  ( 1  /  A
)  <  1 ) ) )
10596, 103, 104mpbir2and 957 . . . . . . 7  |-  ( ph  ->  ( abs `  (
1  /  A ) )  <  1 )
10690, 105expcnv 14596 . . . . . 6  |-  ( ph  ->  ( i  e.  NN0  |->  ( ( 1  /  A ) ^ i
) )  ~~>  0 )
10779, 106syl5eqbr 4688 . . . . 5  |-  ( ph  ->  F  ~~>  0 )
1081, 2, 3, 93, 107climi2 14242 . . . 4  |-  ( ph  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( ( 1  /  A ) ^
k )  -  0 ) )  <  E
)
109 simpll 790 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ph )
110 uznnssnn 11735 . . . . . . . . 9  |-  ( n  e.  NN  ->  ( ZZ>=
`  n )  C_  NN )
111110ad2antlr 763 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ZZ>= `  n )  C_  NN )
112 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  ( ZZ>= `  n )
)
113111, 112sseldd 3604 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
11492subid1d 10381 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  A
) ^ k )  -  0 )  =  ( ( 1  /  A ) ^ k
) )
115114fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( ( 1  /  A ) ^
k )  -  0 ) )  =  ( abs `  ( ( 1  /  A ) ^ k ) ) )
11694adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  A )  e.  RR )
117116, 9reexpcld 13025 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  A ) ^ k )  e.  RR )
11817, 94, 95ltled 10185 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <_  ( 1  /  A ) )
119118adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( 1  /  A
) )
120116, 9, 119expge0d 13026 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( 1  /  A ) ^ k
) )
121117, 120absidd 14161 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( 1  /  A ) ^ k
) )  =  ( ( 1  /  A
) ^ k ) )
122115, 121eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( ( 1  /  A ) ^
k )  -  0 ) )  =  ( ( 1  /  A
) ^ k ) )
123122breq1d 4663 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( ( ( 1  /  A
) ^ k )  -  0 ) )  <  E  <->  ( (
1  /  A ) ^ k )  < 
E ) )
124123biimpd 219 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( ( ( 1  /  A
) ^ k )  -  0 ) )  <  E  ->  (
( 1  /  A
) ^ k )  <  E ) )
125109, 113, 124syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( ( 1  /  A ) ^ k )  - 
0 ) )  < 
E  ->  ( (
1  /  A ) ^ k )  < 
E ) )
126125ralimdva 2962 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( ( 1  /  A ) ^
k )  -  0 ) )  <  E  ->  A. k  e.  (
ZZ>= `  n ) ( ( 1  /  A
) ^ k )  <  E ) )
127126reximdva 3017 . . . 4  |-  ( ph  ->  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( abs `  (
( ( 1  /  A ) ^ k
)  -  0 ) )  <  E  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1  /  A ) ^ k )  < 
E ) )
128108, 127mpd 15 . . 3  |-  ( ph  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1  /  A ) ^ k )  < 
E )
1291rexanuz2 14089 . . 3  |-  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E )  <->  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( 1  -  E
)  <  ( 1  -  ( B ^
k ) )  /\  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1  /  A ) ^ k )  < 
E ) )
13078, 128, 129sylanbrc 698 . 2  |-  ( ph  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )
131 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  A. k  e.  (
ZZ>= `  n ) ( ( 1  -  E
)  <  ( 1  -  ( B ^
k ) )  /\  ( ( 1  /  A ) ^ k
)  <  E )
)
132 nnz 11399 . . . . . . . 8  |-  ( n  e.  NN  ->  n  e.  ZZ )
133 uzid 11702 . . . . . . . 8  |-  ( n  e.  ZZ  ->  n  e.  ( ZZ>= `  n )
)
134132, 133syl 17 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  ( ZZ>= `  n )
)
135134ad2antlr 763 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  n  e.  (
ZZ>= `  n ) )
136 oveq2 6658 . . . . . . . . . 10  |-  ( k  =  n  ->  ( B ^ k )  =  ( B ^ n
) )
137136oveq2d 6666 . . . . . . . . 9  |-  ( k  =  n  ->  (
1  -  ( B ^ k ) )  =  ( 1  -  ( B ^ n
) ) )
138137breq2d 4665 . . . . . . . 8  |-  ( k  =  n  ->  (
( 1  -  E
)  <  ( 1  -  ( B ^
k ) )  <->  ( 1  -  E )  < 
( 1  -  ( B ^ n ) ) ) )
139 oveq2 6658 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 1  /  A
) ^ k )  =  ( ( 1  /  A ) ^
n ) )
140139breq1d 4663 . . . . . . . 8  |-  ( k  =  n  ->  (
( ( 1  /  A ) ^ k
)  <  E  <->  ( (
1  /  A ) ^ n )  < 
E ) )
141138, 140anbi12d 747 . . . . . . 7  |-  ( k  =  n  ->  (
( ( 1  -  E )  <  (
1  -  ( B ^ k ) )  /\  ( ( 1  /  A ) ^
k )  <  E
)  <->  ( ( 1  -  E )  < 
( 1  -  ( B ^ n ) )  /\  ( ( 1  /  A ) ^
n )  <  E
) ) )
142141rspccva 3308 . . . . . 6  |-  ( ( A. k  e.  (
ZZ>= `  n ) ( ( 1  -  E
)  <  ( 1  -  ( B ^
k ) )  /\  ( ( 1  /  A ) ^ k
)  <  E )  /\  n  e.  ( ZZ>=
`  n ) )  ->  ( ( 1  -  E )  < 
( 1  -  ( B ^ n ) )  /\  ( ( 1  /  A ) ^
n )  <  E
) )
143131, 135, 142syl2anc 693 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  ( ( 1  -  E )  < 
( 1  -  ( B ^ n ) )  /\  ( ( 1  /  A ) ^
n )  <  E
) )
144 1cnd 10056 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  1  e.  CC )
14584, 89jca 554 . . . . . . . . . . 11  |-  ( ph  ->  ( A  e.  CC  /\  A  =/=  0 ) )
146145adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( A  e.  CC  /\  A  =/=  0 ) )
14742adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  n  e. 
NN0 )
148 expdiv 12911 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( A  e.  CC  /\  A  =/=  0 )  /\  n  e.  NN0 )  ->  ( ( 1  /  A ) ^
n )  =  ( ( 1 ^ n
)  /  ( A ^ n ) ) )
149144, 146, 147, 148syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1  /  A ) ^ n )  =  ( ( 1 ^ n )  /  ( A ^ n ) ) )
150132adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  ZZ )
151 1exp 12889 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
152150, 151syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1 ^ n )  =  1 )
153152oveq1d 6665 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1 ^ n )  /  ( A ^
n ) )  =  ( 1  /  ( A ^ n ) ) )
154149, 153eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1  /  A ) ^ n )  =  ( 1  /  ( A ^ n ) ) )
155154breq1d 4663 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( 1  /  A
) ^ n )  <  E  <->  ( 1  /  ( A ^
n ) )  < 
E ) )
156155adantr 481 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  ( ( ( 1  /  A ) ^ n )  < 
E  <->  ( 1  / 
( A ^ n
) )  <  E
) )
157156anbi2d 740 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  ( ( ( 1  -  E )  <  ( 1  -  ( B ^ n
) )  /\  (
( 1  /  A
) ^ n )  <  E )  <->  ( (
1  -  E )  <  ( 1  -  ( B ^ n
) )  /\  (
1  /  ( A ^ n ) )  <  E ) ) )
158143, 157mpbid 222 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E ) )  ->  ( ( 1  -  E )  < 
( 1  -  ( B ^ n ) )  /\  ( 1  / 
( A ^ n
) )  <  E
) )
159158ex 450 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( ( 1  -  E )  <  ( 1  -  ( B ^ k
) )  /\  (
( 1  /  A
) ^ k )  <  E )  -> 
( ( 1  -  E )  <  (
1  -  ( B ^ n ) )  /\  ( 1  / 
( A ^ n
) )  <  E
) ) )
160159reximdva 3017 . 2  |-  ( ph  ->  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( 1  -  E )  <  (
1  -  ( B ^ k ) )  /\  ( ( 1  /  A ) ^
k )  <  E
)  ->  E. n  e.  NN  ( ( 1  -  E )  < 
( 1  -  ( B ^ n ) )  /\  ( 1  / 
( A ^ n
) )  <  E
) ) )
161130, 160mpd 15 1  |-  ( ph  ->  E. n  e.  NN  ( ( 1  -  E )  <  (
1  -  ( B ^ n ) )  /\  ( 1  / 
( A ^ n
) )  <  E
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ^cexp 12860   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220
This theorem is referenced by:  stoweidlem49  40266
  Copyright terms: Public domain W3C validator