Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem21 Structured version   Visualization version   Unicode version

Theorem stoweidlem21 40238
Description: Once the Stone Weierstrass theorem has been proven for approximating nonnegative functions, then this lemma is used to extend the result to functions with (possibly) negative values. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem21.1  |-  F/_ t G
stoweidlem21.2  |-  F/_ t H
stoweidlem21.3  |-  F/_ t S
stoweidlem21.4  |-  F/ t
ph
stoweidlem21.5  |-  G  =  ( t  e.  T  |->  ( ( H `  t )  +  S
) )
stoweidlem21.6  |-  ( ph  ->  F : T --> RR )
stoweidlem21.7  |-  ( ph  ->  S  e.  RR )
stoweidlem21.8  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem21.9  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem21.10  |-  ( ph  ->  A. f  e.  A  f : T --> RR )
stoweidlem21.11  |-  ( ph  ->  H  e.  A )
stoweidlem21.12  |-  ( ph  ->  A. t  e.  T  ( abs `  ( ( H `  t )  -  ( ( F `
 t )  -  S ) ) )  <  E )
Assertion
Ref Expression
stoweidlem21  |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E )
Distinct variable groups:    f, g,
t, T    A, f,
g    f, E, g    f, F, g    f, G, g   
f, H, g    ph, f,
g    S, g    x, t, T    x, A    x, S    ph, x
Allowed substitution hints:    ph( t)    A( t)    S( t, f)    E( x, t)    F( x, t)    G( x, t)    H( x, t)

Proof of Theorem stoweidlem21
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 stoweidlem21.5 . . . 4  |-  G  =  ( t  e.  T  |->  ( ( H `  t )  +  S
) )
2 stoweidlem21.4 . . . . 5  |-  F/ t
ph
3 stoweidlem21.7 . . . . . . . 8  |-  ( ph  ->  S  e.  RR )
4 fvconst2g 6467 . . . . . . . 8  |-  ( ( S  e.  RR  /\  t  e.  T )  ->  ( ( T  X.  { S } ) `  t )  =  S )
53, 4sylan 488 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  (
( T  X.  { S } ) `  t
)  =  S )
65eqcomd 2628 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  S  =  ( ( T  X.  { S }
) `  t )
)
76oveq2d 6666 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  (
( H `  t
)  +  S )  =  ( ( H `
 t )  +  ( ( T  X.  { S } ) `  t ) ) )
82, 7mpteq2da 4743 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  ( ( H `  t )  +  S
) )  =  ( t  e.  T  |->  ( ( H `  t
)  +  ( ( T  X.  { S } ) `  t
) ) ) )
91, 8syl5eq 2668 . . 3  |-  ( ph  ->  G  =  ( t  e.  T  |->  ( ( H `  t )  +  ( ( T  X.  { S }
) `  t )
) ) )
10 stoweidlem21.11 . . . 4  |-  ( ph  ->  H  e.  A )
11 fconstmpt 5163 . . . . . 6  |-  ( T  X.  { S }
)  =  ( s  e.  T  |->  S )
12 stoweidlem21.3 . . . . . . 7  |-  F/_ t S
13 nfcv 2764 . . . . . . 7  |-  F/_ s S
14 eqidd 2623 . . . . . . 7  |-  ( s  =  t  ->  S  =  S )
1512, 13, 14cbvmpt 4749 . . . . . 6  |-  ( s  e.  T  |->  S )  =  ( t  e.  T  |->  S )
1611, 15eqtri 2644 . . . . 5  |-  ( T  X.  { S }
)  =  ( t  e.  T  |->  S )
1712nfeq2 2780 . . . . . . . . . 10  |-  F/ t  x  =  S
18 simpl 473 . . . . . . . . . 10  |-  ( ( x  =  S  /\  t  e.  T )  ->  x  =  S )
1917, 18mpteq2da 4743 . . . . . . . . 9  |-  ( x  =  S  ->  (
t  e.  T  |->  x )  =  ( t  e.  T  |->  S ) )
2019eleq1d 2686 . . . . . . . 8  |-  ( x  =  S  ->  (
( t  e.  T  |->  x )  e.  A  <->  ( t  e.  T  |->  S )  e.  A ) )
2120imbi2d 330 . . . . . . 7  |-  ( x  =  S  ->  (
( ph  ->  ( t  e.  T  |->  x )  e.  A )  <->  ( ph  ->  ( t  e.  T  |->  S )  e.  A
) ) )
22 stoweidlem21.9 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
2322expcom 451 . . . . . . 7  |-  ( x  e.  RR  ->  ( ph  ->  ( t  e.  T  |->  x )  e.  A ) )
2421, 23vtoclga 3272 . . . . . 6  |-  ( S  e.  RR  ->  ( ph  ->  ( t  e.  T  |->  S )  e.  A ) )
253, 24mpcom 38 . . . . 5  |-  ( ph  ->  ( t  e.  T  |->  S )  e.  A
)
2616, 25syl5eqel 2705 . . . 4  |-  ( ph  ->  ( T  X.  { S } )  e.  A
)
27 stoweidlem21.8 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
28 stoweidlem21.2 . . . . 5  |-  F/_ t H
29 nfcv 2764 . . . . . 6  |-  F/_ t T
3012nfsn 4242 . . . . . 6  |-  F/_ t { S }
3129, 30nfxp 5142 . . . . 5  |-  F/_ t
( T  X.  { S } )
3227, 28, 31stoweidlem8 40225 . . . 4  |-  ( (
ph  /\  H  e.  A  /\  ( T  X.  { S } )  e.  A )  ->  (
t  e.  T  |->  ( ( H `  t
)  +  ( ( T  X.  { S } ) `  t
) ) )  e.  A )
3310, 26, 32mpd3an23 1426 . . 3  |-  ( ph  ->  ( t  e.  T  |->  ( ( H `  t )  +  ( ( T  X.  { S } ) `  t
) ) )  e.  A )
349, 33eqeltrd 2701 . 2  |-  ( ph  ->  G  e.  A )
35 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  T )
36 stoweidlem21.10 . . . . . . . . . . . 12  |-  ( ph  ->  A. f  e.  A  f : T --> RR )
37 feq1 6026 . . . . . . . . . . . . 13  |-  ( f  =  H  ->  (
f : T --> RR  <->  H : T
--> RR ) )
3837rspccva 3308 . . . . . . . . . . . 12  |-  ( ( A. f  e.  A  f : T --> RR  /\  H  e.  A )  ->  H : T --> RR )
3936, 10, 38syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  H : T --> RR )
4039ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  T )  ->  ( H `  t )  e.  RR )
413adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  T )  ->  S  e.  RR )
4240, 41readdcld 10069 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  (
( H `  t
)  +  S )  e.  RR )
431fvmpt2 6291 . . . . . . . . 9  |-  ( ( t  e.  T  /\  ( ( H `  t )  +  S
)  e.  RR )  ->  ( G `  t )  =  ( ( H `  t
)  +  S ) )
4435, 42, 43syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  ( G `  t )  =  ( ( H `
 t )  +  S ) )
4544oveq1d 6665 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  (
( G `  t
)  -  ( F `
 t ) )  =  ( ( ( H `  t )  +  S )  -  ( F `  t ) ) )
4640recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  ( H `  t )  e.  CC )
47 stoweidlem21.6 . . . . . . . . . 10  |-  ( ph  ->  F : T --> RR )
4847ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
4948recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  CC )
503recnd 10068 . . . . . . . . 9  |-  ( ph  ->  S  e.  CC )
5150adantr 481 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  S  e.  CC )
5246, 49, 51subsub3d 10422 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  (
( H `  t
)  -  ( ( F `  t )  -  S ) )  =  ( ( ( H `  t )  +  S )  -  ( F `  t ) ) )
5345, 52eqtr4d 2659 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  (
( G `  t
)  -  ( F `
 t ) )  =  ( ( H `
 t )  -  ( ( F `  t )  -  S
) ) )
5453fveq2d 6195 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  ( abs `  ( ( G `
 t )  -  ( F `  t ) ) )  =  ( abs `  ( ( H `  t )  -  ( ( F `
 t )  -  S ) ) ) )
55 stoweidlem21.12 . . . . . 6  |-  ( ph  ->  A. t  e.  T  ( abs `  ( ( H `  t )  -  ( ( F `
 t )  -  S ) ) )  <  E )
5655r19.21bi 2932 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  ( abs `  ( ( H `
 t )  -  ( ( F `  t )  -  S
) ) )  < 
E )
5754, 56eqbrtrd 4675 . . . 4  |-  ( (
ph  /\  t  e.  T )  ->  ( abs `  ( ( G `
 t )  -  ( F `  t ) ) )  <  E
)
5857ex 450 . . 3  |-  ( ph  ->  ( t  e.  T  ->  ( abs `  (
( G `  t
)  -  ( F `
 t ) ) )  <  E ) )
592, 58ralrimi 2957 . 2  |-  ( ph  ->  A. t  e.  T  ( abs `  ( ( G `  t )  -  ( F `  t ) ) )  <  E )
60 stoweidlem21.1 . . . . 5  |-  F/_ t G
6160nfeq2 2780 . . . 4  |-  F/ t  f  =  G
62 fveq1 6190 . . . . . . 7  |-  ( f  =  G  ->  (
f `  t )  =  ( G `  t ) )
6362oveq1d 6665 . . . . . 6  |-  ( f  =  G  ->  (
( f `  t
)  -  ( F `
 t ) )  =  ( ( G `
 t )  -  ( F `  t ) ) )
6463fveq2d 6195 . . . . 5  |-  ( f  =  G  ->  ( abs `  ( ( f `
 t )  -  ( F `  t ) ) )  =  ( abs `  ( ( G `  t )  -  ( F `  t ) ) ) )
6564breq1d 4663 . . . 4  |-  ( f  =  G  ->  (
( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  <  E  <->  ( abs `  ( ( G `  t )  -  ( F `  t )
) )  <  E
) )
6661, 65ralbid 2983 . . 3  |-  ( f  =  G  ->  ( A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E  <->  A. t  e.  T  ( abs `  ( ( G `  t )  -  ( F `  t )
) )  <  E
) )
6766rspcev 3309 . 2  |-  ( ( G  e.  A  /\  A. t  e.  T  ( abs `  ( ( G `  t )  -  ( F `  t ) ) )  <  E )  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E )
6834, 59, 67syl2anc 693 1  |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   A.wral 2912   E.wrex 2913   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935    + caddc 9939    < clt 10074    - cmin 10266   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268
This theorem is referenced by:  stoweidlem62  40279
  Copyright terms: Public domain W3C validator