![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strlemor0OLD | Structured version Visualization version Unicode version |
Description: Structure definition utility lemma. To prove that an explicit function is a function using O(n) steps, exploit the order properties of the index set. Zero-pair case. Obsolete as of 26-Nov-2021. Theorems strlemor0OLD 15968, strlemor1OLD 15969, strlemor2OLD 15970, strlemor3OLD 15971 were replaced by strleun 15972, strle1 15973, strle2 15974, strle3 15975 following the introduction df-struct 15859. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strlemor0OLD |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fun0 5954 |
. . 3
![]() ![]() ![]() | |
2 | funcnvcnv 5956 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
. 2
![]() ![]() ![]() ![]() ![]() |
4 | dm0 5339 |
. . 3
![]() ![]() ![]() ![]() ![]() | |
5 | 0ss 3972 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | eqsstri 3635 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 3, 6 | pm3.2i 471 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-fun 5890 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |