MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subccocl Structured version   Visualization version   Unicode version

Theorem subccocl 16505
Description: A subcategory is closed under composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subcidcl.j  |-  ( ph  ->  J  e.  (Subcat `  C ) )
subcidcl.2  |-  ( ph  ->  J  Fn  ( S  X.  S ) )
subcidcl.x  |-  ( ph  ->  X  e.  S )
subccocl.o  |-  .x.  =  (comp `  C )
subccocl.y  |-  ( ph  ->  Y  e.  S )
subccocl.z  |-  ( ph  ->  Z  e.  S )
subccocl.f  |-  ( ph  ->  F  e.  ( X J Y ) )
subccocl.g  |-  ( ph  ->  G  e.  ( Y J Z ) )
Assertion
Ref Expression
subccocl  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X J Z ) )

Proof of Theorem subccocl
Dummy variables  f 
g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subcidcl.j . . . 4  |-  ( ph  ->  J  e.  (Subcat `  C ) )
2 eqid 2622 . . . . 5  |-  ( Hom f  `  C )  =  ( Hom f  `  C )
3 eqid 2622 . . . . 5  |-  ( Id
`  C )  =  ( Id `  C
)
4 subccocl.o . . . . 5  |-  .x.  =  (comp `  C )
5 subcrcl 16476 . . . . . 6  |-  ( J  e.  (Subcat `  C
)  ->  C  e.  Cat )
61, 5syl 17 . . . . 5  |-  ( ph  ->  C  e.  Cat )
7 subcidcl.2 . . . . 5  |-  ( ph  ->  J  Fn  ( S  X.  S ) )
82, 3, 4, 6, 7issubc2 16496 . . . 4  |-  ( ph  ->  ( J  e.  (Subcat `  C )  <->  ( J  C_cat  ( Hom f  `  C )  /\  A. x  e.  S  (
( ( Id `  C ) `  x
)  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g ( <. x ,  y >.  .x.  z
) f )  e.  ( x J z ) ) ) ) )
91, 8mpbid 222 . . 3  |-  ( ph  ->  ( J  C_cat  ( Hom f  `  C )  /\  A. x  e.  S  (
( ( Id `  C ) `  x
)  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g ( <. x ,  y >.  .x.  z
) f )  e.  ( x J z ) ) ) )
109simprd 479 . 2  |-  ( ph  ->  A. x  e.  S  ( ( ( Id
`  C ) `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) ) )
11 subcidcl.x . . 3  |-  ( ph  ->  X  e.  S )
12 subccocl.y . . . . . 6  |-  ( ph  ->  Y  e.  S )
1312adantr 481 . . . . 5  |-  ( (
ph  /\  x  =  X )  ->  Y  e.  S )
14 subccocl.z . . . . . . 7  |-  ( ph  ->  Z  e.  S )
1514ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  Z  e.  S )
16 subccocl.f . . . . . . . . 9  |-  ( ph  ->  F  e.  ( X J Y ) )
1716ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  F  e.  ( X J Y ) )
18 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  x  =  X )
19 simplr 792 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  y  =  Y )
2018, 19oveq12d 6668 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  (
x J y )  =  ( X J Y ) )
2117, 20eleqtrrd 2704 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  F  e.  ( x J y ) )
22 subccocl.g . . . . . . . . . 10  |-  ( ph  ->  G  e.  ( Y J Z ) )
2322ad4antr 768 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  G  e.  ( Y J Z ) )
24 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  y  =  Y )
25 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  z  =  Z )
2624, 25oveq12d 6668 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  (
y J z )  =  ( Y J Z ) )
2723, 26eleqtrrd 2704 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  G  e.  ( y J z ) )
28 simp-5r 809 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  x  =  X )
29 simp-4r 807 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  y  =  Y )
3028, 29opeq12d 4410 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  <. x ,  y >.  =  <. X ,  Y >. )
31 simpllr 799 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  z  =  Z )
3230, 31oveq12d 6668 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  ( <. x ,  y >.  .x.  z )  =  (
<. X ,  Y >.  .x. 
Z ) )
33 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  g  =  G )
34 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  f  =  F )
3532, 33, 34oveq123d 6671 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
g ( <. x ,  y >.  .x.  z
) f )  =  ( G ( <. X ,  Y >.  .x. 
Z ) F ) )
3628, 31oveq12d 6668 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
x J z )  =  ( X J Z ) )
3735, 36eleq12d 2695 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x J z )  <->  ( G
( <. X ,  Y >.  .x.  Z ) F )  e.  ( X J Z ) ) )
3827, 37rspcdv 3312 . . . . . . 7  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  ( A. g  e.  (
y J z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x J z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X J Z ) ) )
3921, 38rspcimdv 3310 . . . . . 6  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  ( A. f  e.  (
x J y ) A. g  e.  ( y J z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x J z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X J Z ) ) )
4015, 39rspcimdv 3310 . . . . 5  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  ( A. z  e.  S  A. f  e.  (
x J y ) A. g  e.  ( y J z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x J z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X J Z ) ) )
4113, 40rspcimdv 3310 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  ( A. y  e.  S  A. z  e.  S  A. f  e.  (
x J y ) A. g  e.  ( y J z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x J z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X J Z ) ) )
4241adantld 483 . . 3  |-  ( (
ph  /\  x  =  X )  ->  (
( ( ( Id
`  C ) `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) )  -> 
( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X J Z ) ) )
4311, 42rspcimdv 3310 . 2  |-  ( ph  ->  ( A. x  e.  S  ( ( ( Id `  C ) `
 x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x J z ) )  -> 
( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X J Z ) ) )
4410, 43mpd 15 1  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X J Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183   class class class wbr 4653    X. cxp 5112    Fn wfn 5883   ` cfv 5888  (class class class)co 6650  compcco 15953   Catccat 16325   Idccid 16326   Hom f chomf 16327    C_cat cssc 16467  Subcatcsubc 16469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-ixp 7909  df-ssc 16470  df-subc 16472
This theorem is referenced by:  subccatid  16506  funcres  16556
  Copyright terms: Public domain W3C validator