MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supiso Structured version   Visualization version   Unicode version

Theorem supiso 8381
Description: Image of a supremum under an isomorphism. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
supiso.2  |-  ( ph  ->  C  C_  A )
supisoex.3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
supiso.4  |-  ( ph  ->  R  Or  A )
Assertion
Ref Expression
supiso  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  S )  =  ( F `  sup ( C ,  A ,  R ) ) )
Distinct variable groups:    x, y,
z, A    x, C, y, z    x, F, y, z    x, R, y, z    x, S, y, z    x, B, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem supiso
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supiso.4 . . 3  |-  ( ph  ->  R  Or  A )
2 supiso.1 . . . 4  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
3 isoso 6598 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  ( R  Or  A 
<->  S  Or  B ) )
42, 3syl 17 . . 3  |-  ( ph  ->  ( R  Or  A  <->  S  Or  B ) )
51, 4mpbid 222 . 2  |-  ( ph  ->  S  Or  B )
6 isof1o 6573 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  F : A -1-1-onto-> B
)
7 f1of 6137 . . . 4  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
82, 6, 73syl 18 . . 3  |-  ( ph  ->  F : A --> B )
9 supisoex.3 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
101, 9supcl 8364 . . 3  |-  ( ph  ->  sup ( C ,  A ,  R )  e.  A )
118, 10ffvelrnd 6360 . 2  |-  ( ph  ->  ( F `  sup ( C ,  A ,  R ) )  e.  B )
121, 9supub 8365 . . . . . 6  |-  ( ph  ->  ( u  e.  C  ->  -.  sup ( C ,  A ,  R
) R u ) )
1312ralrimiv 2965 . . . . 5  |-  ( ph  ->  A. u  e.  C  -.  sup ( C ,  A ,  R ) R u )
141, 9suplub 8366 . . . . . . 7  |-  ( ph  ->  ( ( u  e.  A  /\  u R sup ( C ,  A ,  R )
)  ->  E. z  e.  C  u R
z ) )
1514expd 452 . . . . . 6  |-  ( ph  ->  ( u  e.  A  ->  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R
z ) ) )
1615ralrimiv 2965 . . . . 5  |-  ( ph  ->  A. u  e.  A  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R
z ) )
17 supiso.2 . . . . . . 7  |-  ( ph  ->  C  C_  A )
182, 17supisolem 8379 . . . . . 6  |-  ( (
ph  /\  sup ( C ,  A ,  R )  e.  A
)  ->  ( ( A. u  e.  C  -.  sup ( C ,  A ,  R ) R u  /\  A. u  e.  A  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R z ) )  <-> 
( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) ) ) )
1910, 18mpdan 702 . . . . 5  |-  ( ph  ->  ( ( A. u  e.  C  -.  sup ( C ,  A ,  R ) R u  /\  A. u  e.  A  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R z ) )  <-> 
( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) ) ) )
2013, 16, 19mpbi2and 956 . . . 4  |-  ( ph  ->  ( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) ) )
2120simpld 475 . . 3  |-  ( ph  ->  A. w  e.  ( F " C )  -.  ( F `  sup ( C ,  A ,  R ) ) S w )
2221r19.21bi 2932 . 2  |-  ( (
ph  /\  w  e.  ( F " C ) )  ->  -.  ( F `  sup ( C ,  A ,  R
) ) S w )
2320simprd 479 . . . 4  |-  ( ph  ->  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) )
2423r19.21bi 2932 . . 3  |-  ( (
ph  /\  w  e.  B )  ->  (
w S ( F `
 sup ( C ,  A ,  R
) )  ->  E. v  e.  ( F " C
) w S v ) )
2524impr 649 . 2  |-  ( (
ph  /\  ( w  e.  B  /\  w S ( F `  sup ( C ,  A ,  R ) ) ) )  ->  E. v  e.  ( F " C
) w S v )
265, 11, 22, 25eqsupd 8363 1  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  S )  =  ( F `  sup ( C ,  A ,  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653    Or wor 5034   "cima 5117   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889   supcsup 8346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-sup 8348
This theorem is referenced by:  infiso  8413  infrenegsup  11006
  Copyright terms: Public domain W3C validator