MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfrescl Structured version   Visualization version   Unicode version

Theorem cantnfrescl 8573
Description: A function is finitely supported from  B to  A iff the extended function is finitely supported from  D to  A. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s  |-  S  =  dom  ( A CNF  B
)
cantnfs.a  |-  ( ph  ->  A  e.  On )
cantnfs.b  |-  ( ph  ->  B  e.  On )
cantnfrescl.d  |-  ( ph  ->  D  e.  On )
cantnfrescl.b  |-  ( ph  ->  B  C_  D )
cantnfrescl.x  |-  ( (
ph  /\  n  e.  ( D  \  B ) )  ->  X  =  (/) )
cantnfrescl.a  |-  ( ph  -> 
(/)  e.  A )
cantnfrescl.t  |-  T  =  dom  ( A CNF  D
)
Assertion
Ref Expression
cantnfrescl  |-  ( ph  ->  ( ( n  e.  B  |->  X )  e.  S  <->  ( n  e.  D  |->  X )  e.  T ) )
Distinct variable groups:    B, n    D, n    A, n    ph, n
Allowed substitution hints:    S( n)    T( n)    X( n)

Proof of Theorem cantnfrescl
StepHypRef Expression
1 cantnfrescl.b . . . . 5  |-  ( ph  ->  B  C_  D )
2 cantnfrescl.x . . . . . . 7  |-  ( (
ph  /\  n  e.  ( D  \  B ) )  ->  X  =  (/) )
3 cantnfrescl.a . . . . . . . 8  |-  ( ph  -> 
(/)  e.  A )
43adantr 481 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( D  \  B ) )  ->  (/)  e.  A
)
52, 4eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  n  e.  ( D  \  B ) )  ->  X  e.  A )
65ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. n  e.  ( D  \  B ) X  e.  A )
71, 6raldifeq 4059 . . . 4  |-  ( ph  ->  ( A. n  e.  B  X  e.  A  <->  A. n  e.  D  X  e.  A ) )
8 eqid 2622 . . . . 5  |-  ( n  e.  B  |->  X )  =  ( n  e.  B  |->  X )
98fmpt 6381 . . . 4  |-  ( A. n  e.  B  X  e.  A  <->  ( n  e.  B  |->  X ) : B --> A )
10 eqid 2622 . . . . 5  |-  ( n  e.  D  |->  X )  =  ( n  e.  D  |->  X )
1110fmpt 6381 . . . 4  |-  ( A. n  e.  D  X  e.  A  <->  ( n  e.  D  |->  X ) : D --> A )
127, 9, 113bitr3g 302 . . 3  |-  ( ph  ->  ( ( n  e.  B  |->  X ) : B --> A  <->  ( n  e.  D  |->  X ) : D --> A ) )
13 cantnfs.b . . . . . 6  |-  ( ph  ->  B  e.  On )
14 mptexg 6484 . . . . . 6  |-  ( B  e.  On  ->  (
n  e.  B  |->  X )  e.  _V )
1513, 14syl 17 . . . . 5  |-  ( ph  ->  ( n  e.  B  |->  X )  e.  _V )
16 funmpt 5926 . . . . . 6  |-  Fun  (
n  e.  B  |->  X )
1716a1i 11 . . . . 5  |-  ( ph  ->  Fun  ( n  e.  B  |->  X ) )
18 cantnfrescl.d . . . . . . 7  |-  ( ph  ->  D  e.  On )
19 mptexg 6484 . . . . . . 7  |-  ( D  e.  On  ->  (
n  e.  D  |->  X )  e.  _V )
2018, 19syl 17 . . . . . 6  |-  ( ph  ->  ( n  e.  D  |->  X )  e.  _V )
21 funmpt 5926 . . . . . 6  |-  Fun  (
n  e.  D  |->  X )
2220, 21jctir 561 . . . . 5  |-  ( ph  ->  ( ( n  e.  D  |->  X )  e. 
_V  /\  Fun  ( n  e.  D  |->  X ) ) )
2315, 17, 22jca31 557 . . . 4  |-  ( ph  ->  ( ( ( n  e.  B  |->  X )  e.  _V  /\  Fun  ( n  e.  B  |->  X ) )  /\  ( ( n  e.  D  |->  X )  e. 
_V  /\  Fun  ( n  e.  D  |->  X ) ) ) )
2418, 1, 2extmptsuppeq 7319 . . . 4  |-  ( ph  ->  ( ( n  e.  B  |->  X ) supp  (/) )  =  ( ( n  e.  D  |->  X ) supp  (/) ) )
25 suppeqfsuppbi 8289 . . . 4  |-  ( ( ( ( n  e.  B  |->  X )  e. 
_V  /\  Fun  ( n  e.  B  |->  X ) )  /\  ( ( n  e.  D  |->  X )  e.  _V  /\  Fun  ( n  e.  D  |->  X ) ) )  ->  ( ( ( n  e.  B  |->  X ) supp  (/) )  =  ( ( n  e.  D  |->  X ) supp  (/) )  -> 
( ( n  e.  B  |->  X ) finSupp  (/)  <->  ( n  e.  D  |->  X ) finSupp  (/) ) ) )
2623, 24, 25sylc 65 . . 3  |-  ( ph  ->  ( ( n  e.  B  |->  X ) finSupp  (/)  <->  ( n  e.  D  |->  X ) finSupp  (/) ) )
2712, 26anbi12d 747 . 2  |-  ( ph  ->  ( ( ( n  e.  B  |->  X ) : B --> A  /\  ( n  e.  B  |->  X ) finSupp  (/) )  <->  ( (
n  e.  D  |->  X ) : D --> A  /\  ( n  e.  D  |->  X ) finSupp  (/) ) ) )
28 cantnfs.s . . 3  |-  S  =  dom  ( A CNF  B
)
29 cantnfs.a . . 3  |-  ( ph  ->  A  e.  On )
3028, 29, 13cantnfs 8563 . 2  |-  ( ph  ->  ( ( n  e.  B  |->  X )  e.  S  <->  ( ( n  e.  B  |->  X ) : B --> A  /\  ( n  e.  B  |->  X ) finSupp  (/) ) ) )
31 cantnfrescl.t . . 3  |-  T  =  dom  ( A CNF  D
)
3231, 29, 18cantnfs 8563 . 2  |-  ( ph  ->  ( ( n  e.  D  |->  X )  e.  T  <->  ( ( n  e.  D  |->  X ) : D --> A  /\  ( n  e.  D  |->  X ) finSupp  (/) ) ) )
3327, 30, 323bitr4d 300 1  |-  ( ph  ->  ( ( n  e.  B  |->  X )  e.  S  <->  ( n  e.  D  |->  X )  e.  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   Oncon0 5723   Fun wfun 5882   -->wf 5884  (class class class)co 6650   supp csupp 7295   finSupp cfsupp 8275   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-map 7859  df-fsupp 8276  df-cnf 8559
This theorem is referenced by:  cantnfres  8574
  Copyright terms: Public domain W3C validator