MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funisfsupp Structured version   Visualization version   Unicode version

Theorem funisfsupp 8280
Description: The property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.)
Assertion
Ref Expression
funisfsupp  |-  ( ( Fun  R  /\  R  e.  V  /\  Z  e.  W )  ->  ( R finSupp  Z  <->  ( R supp  Z
)  e.  Fin )
)

Proof of Theorem funisfsupp
StepHypRef Expression
1 isfsupp 8279 . . 3  |-  ( ( R  e.  V  /\  Z  e.  W )  ->  ( R finSupp  Z  <->  ( Fun  R  /\  ( R supp  Z
)  e.  Fin )
) )
213adant1 1079 . 2  |-  ( ( Fun  R  /\  R  e.  V  /\  Z  e.  W )  ->  ( R finSupp  Z  <->  ( Fun  R  /\  ( R supp  Z )  e.  Fin ) ) )
3 ibar 525 . . . 4  |-  ( Fun 
R  ->  ( ( R supp  Z )  e.  Fin  <->  ( Fun  R  /\  ( R supp 
Z )  e.  Fin ) ) )
43bicomd 213 . . 3  |-  ( Fun 
R  ->  ( ( Fun  R  /\  ( R supp 
Z )  e.  Fin ) 
<->  ( R supp  Z )  e.  Fin ) )
543ad2ant1 1082 . 2  |-  ( ( Fun  R  /\  R  e.  V  /\  Z  e.  W )  ->  (
( Fun  R  /\  ( R supp  Z )  e.  Fin )  <->  ( R supp  Z )  e.  Fin )
)
62, 5bitrd 268 1  |-  ( ( Fun  R  /\  R  e.  V  /\  Z  e.  W )  ->  ( R finSupp  Z  <->  ( R supp  Z
)  e.  Fin )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990   class class class wbr 4653   Fun wfun 5882  (class class class)co 6650   supp csupp 7295   Fincfn 7955   finSupp cfsupp 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-fsupp 8276
This theorem is referenced by:  suppeqfsuppbi  8289  suppssfifsupp  8290  fsuppunbi  8296  0fsupp  8297  snopfsupp  8298  fsuppres  8300  resfsupp  8302  frnfsuppbi  8304  fsuppco  8307  sniffsupp  8315  cantnfp1lem1  8575  mptnn0fsupp  12797  dprdfadd  18419  lcomfsupp  18903  mplsubglem2  19436  ltbwe  19472  frlmbas  20099  frlmphllem  20119  frlmsslsp  20135  pmatcollpw2lem  20582  rrxmval  23188  eulerpartgbij  30434  pwfi2f1o  37666  fidmfisupp  39390  lcoc0  42211
  Copyright terms: Public domain W3C validator