MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppimacnvss Structured version   Visualization version   Unicode version

Theorem suppimacnvss 7305
Description: The support of functions "defined" by inverse images is a subset of the support defined by df-supp 7296. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
suppimacnvss  |-  ( ( R  e.  V  /\  Z  e.  W )  ->  ( `' R "
( _V  \  { Z } ) )  C_  ( R supp  Z )
)

Proof of Theorem suppimacnvss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exsimpl 1795 . . . . 5  |-  ( E. y ( x R y  /\  y  =/= 
Z )  ->  E. y  x R y )
2 pm5.1 902 . . . . . 6  |-  ( ( x R y  /\  y  =/=  Z )  -> 
( x R y  <-> 
y  =/=  Z ) )
32eximi 1762 . . . . 5  |-  ( E. y ( x R y  /\  y  =/= 
Z )  ->  E. y
( x R y  <-> 
y  =/=  Z ) )
41, 3jca 554 . . . 4  |-  ( E. y ( x R y  /\  y  =/= 
Z )  ->  ( E. y  x R
y  /\  E. y
( x R y  <-> 
y  =/=  Z ) ) )
54a1i 11 . . 3  |-  ( ( R  e.  V  /\  Z  e.  W )  ->  ( E. y ( x R y  /\  y  =/=  Z )  -> 
( E. y  x R y  /\  E. y ( x R y  <->  y  =/=  Z
) ) ) )
65ss2abdv 3675 . 2  |-  ( ( R  e.  V  /\  Z  e.  W )  ->  { x  |  E. y ( x R y  /\  y  =/= 
Z ) }  C_  { x  |  ( E. y  x R y  /\  E. y ( x R y  <->  y  =/=  Z ) ) } )
7 cnvimadfsn 7304 . . 3  |-  ( `' R " ( _V 
\  { Z }
) )  =  {
x  |  E. y
( x R y  /\  y  =/=  Z
) }
87a1i 11 . 2  |-  ( ( R  e.  V  /\  Z  e.  W )  ->  ( `' R "
( _V  \  { Z } ) )  =  { x  |  E. y ( x R y  /\  y  =/= 
Z ) } )
9 suppvalbr 7299 . 2  |-  ( ( R  e.  V  /\  Z  e.  W )  ->  ( R supp  Z )  =  { x  |  ( E. y  x R y  /\  E. y ( x R y  <->  y  =/=  Z
) ) } )
106, 8, 93sstr4d 3648 1  |-  ( ( R  e.  V  /\  Z  e.  W )  ->  ( `' R "
( _V  \  { Z } ) )  C_  ( R supp  Z )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653   `'ccnv 5113   "cima 5117  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  suppimacnv  7306
  Copyright terms: Public domain W3C validator