![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppimacnvss | Structured version Visualization version GIF version |
Description: The support of functions "defined" by inverse images is a subset of the support defined by df-supp 7296. (Contributed by AV, 7-Apr-2019.) |
Ref | Expression |
---|---|
suppimacnvss | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1795 | . . . . 5 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → ∃𝑦 𝑥𝑅𝑦) | |
2 | pm5.1 902 | . . . . . 6 ⊢ ((𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → (𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)) | |
3 | 2 | eximi 1762 | . . . . 5 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)) |
4 | 1, 3 | jca 554 | . . . 4 ⊢ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))) |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)))) |
6 | 5 | ss2abdv 3675 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} ⊆ {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) |
7 | cnvimadfsn 7304 | . . 3 ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} | |
8 | 7 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)}) |
9 | suppvalbr 7299 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) | |
10 | 6, 8, 9 | 3sstr4d 3648 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 {cab 2608 ≠ wne 2794 Vcvv 3200 ∖ cdif 3571 ⊆ wss 3574 {csn 4177 class class class wbr 4653 ◡ccnv 5113 “ cima 5117 (class class class)co 6650 supp csupp 7295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-supp 7296 |
This theorem is referenced by: suppimacnv 7306 |
Copyright terms: Public domain | W3C validator |