MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppofss2d Structured version   Visualization version   Unicode version

Theorem suppofss2d 7333
Description: Condition for the support of a function operation to be a subset of the support of the right function term. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
suppofssd.1  |-  ( ph  ->  A  e.  V )
suppofssd.2  |-  ( ph  ->  Z  e.  B )
suppofssd.3  |-  ( ph  ->  F : A --> B )
suppofssd.4  |-  ( ph  ->  G : A --> B )
suppofss2d.5  |-  ( (
ph  /\  x  e.  B )  ->  (
x X Z )  =  Z )
Assertion
Ref Expression
suppofss2d  |-  ( ph  ->  ( ( F  oF X G ) supp 
Z )  C_  ( G supp  Z ) )
Distinct variable groups:    x, A    x, B    x, F    x, G    x, X    x, Z    ph, x
Allowed substitution hint:    V( x)

Proof of Theorem suppofss2d
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 suppofssd.3 . . . . . . . 8  |-  ( ph  ->  F : A --> B )
2 ffn 6045 . . . . . . . 8  |-  ( F : A --> B  ->  F  Fn  A )
31, 2syl 17 . . . . . . 7  |-  ( ph  ->  F  Fn  A )
4 suppofssd.4 . . . . . . . 8  |-  ( ph  ->  G : A --> B )
5 ffn 6045 . . . . . . . 8  |-  ( G : A --> B  ->  G  Fn  A )
64, 5syl 17 . . . . . . 7  |-  ( ph  ->  G  Fn  A )
7 suppofssd.1 . . . . . . 7  |-  ( ph  ->  A  e.  V )
8 inidm 3822 . . . . . . 7  |-  ( A  i^i  A )  =  A
9 eqidd 2623 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  =  ( F `  y ) )
10 eqidd 2623 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  ( G `  y )  =  ( G `  y ) )
113, 6, 7, 7, 8, 9, 10ofval 6906 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  (
( F  oF X G ) `  y )  =  ( ( F `  y
) X ( G `
 y ) ) )
1211adantr 481 . . . . 5  |-  ( ( ( ph  /\  y  e.  A )  /\  ( G `  y )  =  Z )  ->  (
( F  oF X G ) `  y )  =  ( ( F `  y
) X ( G `
 y ) ) )
13 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  y  e.  A )  /\  ( G `  y )  =  Z )  ->  ( G `  y )  =  Z )
1413oveq2d 6666 . . . . 5  |-  ( ( ( ph  /\  y  e.  A )  /\  ( G `  y )  =  Z )  ->  (
( F `  y
) X ( G `
 y ) )  =  ( ( F `
 y ) X Z ) )
15 suppofss2d.5 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  (
x X Z )  =  Z )
1615ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. x  e.  B  ( x X Z )  =  Z )
1716adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  A. x  e.  B  ( x X Z )  =  Z )
181ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  B )
19 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  A )  /\  x  =  ( F `  y ) )  ->  x  =  ( F `  y ) )
2019oveq1d 6665 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  A )  /\  x  =  ( F `  y ) )  -> 
( x X Z )  =  ( ( F `  y ) X Z ) )
2120eqeq1d 2624 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  A )  /\  x  =  ( F `  y ) )  -> 
( ( x X Z )  =  Z  <-> 
( ( F `  y ) X Z )  =  Z ) )
2218, 21rspcdv 3312 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  ( A. x  e.  B  ( x X Z )  =  Z  -> 
( ( F `  y ) X Z )  =  Z ) )
2317, 22mpd 15 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  (
( F `  y
) X Z )  =  Z )
2423adantr 481 . . . . 5  |-  ( ( ( ph  /\  y  e.  A )  /\  ( G `  y )  =  Z )  ->  (
( F `  y
) X Z )  =  Z )
2512, 14, 243eqtrd 2660 . . . 4  |-  ( ( ( ph  /\  y  e.  A )  /\  ( G `  y )  =  Z )  ->  (
( F  oF X G ) `  y )  =  Z )
2625ex 450 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  (
( G `  y
)  =  Z  -> 
( ( F  oF X G ) `
 y )  =  Z ) )
2726ralrimiva 2966 . 2  |-  ( ph  ->  A. y  e.  A  ( ( G `  y )  =  Z  ->  ( ( F  oF X G ) `  y )  =  Z ) )
283, 6, 7, 7, 8offn 6908 . . 3  |-  ( ph  ->  ( F  oF X G )  Fn  A )
29 ssid 3624 . . . 4  |-  A  C_  A
3029a1i 11 . . 3  |-  ( ph  ->  A  C_  A )
31 suppofssd.2 . . 3  |-  ( ph  ->  Z  e.  B )
32 suppfnss 7320 . . 3  |-  ( ( ( ( F  oF X G )  Fn  A  /\  G  Fn  A )  /\  ( A  C_  A  /\  A  e.  V  /\  Z  e.  B ) )  -> 
( A. y  e.  A  ( ( G `
 y )  =  Z  ->  ( ( F  oF X G ) `  y )  =  Z )  -> 
( ( F  oF X G ) supp 
Z )  C_  ( G supp  Z ) ) )
3328, 6, 30, 7, 31, 32syl23anc 1333 . 2  |-  ( ph  ->  ( A. y  e.  A  ( ( G `
 y )  =  Z  ->  ( ( F  oF X G ) `  y )  =  Z )  -> 
( ( F  oF X G ) supp 
Z )  C_  ( G supp  Z ) ) )
3427, 33mpd 15 1  |-  ( ph  ->  ( ( F  oF X G ) supp 
Z )  C_  ( G supp  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-supp 7296
This theorem is referenced by:  frlmphl  20120
  Copyright terms: Public domain W3C validator