| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supp0cosupp0 | Structured version Visualization version Unicode version | ||
| Description: The support of the composition of two functions is empty if the support of the outer function is empty. (Contributed by AV, 30-May-2019.) |
| Ref | Expression |
|---|---|
| supp0cosupp0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . . . . . 8
| |
| 2 | 1 | anim2i 593 |
. . . . . . 7
|
| 3 | 2 | ancomd 467 |
. . . . . 6
|
| 4 | suppimacnv 7306 |
. . . . . 6
| |
| 5 | 3, 4 | syl 17 |
. . . . 5
|
| 6 | 5 | eqeq1d 2624 |
. . . 4
|
| 7 | coexg 7117 |
. . . . . . . . 9
| |
| 8 | 7 | anim2i 593 |
. . . . . . . 8
|
| 9 | 8 | ancomd 467 |
. . . . . . 7
|
| 10 | suppimacnv 7306 |
. . . . . . 7
| |
| 11 | 9, 10 | syl 17 |
. . . . . 6
|
| 12 | cnvco 5308 |
. . . . . . . . 9
| |
| 13 | 12 | imaeq1i 5463 |
. . . . . . . 8
|
| 14 | imaco 5640 |
. . . . . . . 8
| |
| 15 | 13, 14 | eqtri 2644 |
. . . . . . 7
|
| 16 | imaeq2 5462 |
. . . . . . . 8
| |
| 17 | ima0 5481 |
. . . . . . . 8
| |
| 18 | 16, 17 | syl6eq 2672 |
. . . . . . 7
|
| 19 | 15, 18 | syl5eq 2668 |
. . . . . 6
|
| 20 | 11, 19 | sylan9eq 2676 |
. . . . 5
|
| 21 | 20 | ex 450 |
. . . 4
|
| 22 | 6, 21 | sylbid 230 |
. . 3
|
| 23 | 22 | ex 450 |
. 2
|
| 24 | id 22 |
. . . . 5
| |
| 25 | 24 | intnand 962 |
. . . 4
|
| 26 | supp0prc 7298 |
. . . 4
| |
| 27 | 25, 26 | syl 17 |
. . 3
|
| 28 | 27 | 2a1d 26 |
. 2
|
| 29 | 23, 28 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-supp 7296 |
| This theorem is referenced by: gsumval3lem2 18307 |
| Copyright terms: Public domain | W3C validator |