MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppfnss Structured version   Visualization version   Unicode version

Theorem suppfnss 7320
Description: The support of a function which has the same zero values (in its domain) as another function is a subset of the support of this other function. (Contributed by AV, 30-Apr-2019.)
Assertion
Ref Expression
suppfnss  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  -> 
( A. x  e.  A  ( ( G `
 x )  =  Z  ->  ( F `  x )  =  Z )  ->  ( F supp  Z )  C_  ( G supp  Z ) ) )
Distinct variable groups:    x, A    x, F    x, G    x, Z
Allowed substitution hints:    B( x)    V( x)    W( x)

Proof of Theorem suppfnss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fndm 5990 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  dom  F  =  A )
21eleq2d 2687 . . . . . . . . . 10  |-  ( F  Fn  A  ->  (
y  e.  dom  F  <->  y  e.  A ) )
32ad2antrr 762 . . . . . . . . 9  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  -> 
( y  e.  dom  F  <-> 
y  e.  A ) )
4 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( G `  x )  =  ( G `  y ) )
54eqeq1d 2624 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( G `  x
)  =  Z  <->  ( G `  y )  =  Z ) )
6 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
76eqeq1d 2624 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( F `  x
)  =  Z  <->  ( F `  y )  =  Z ) )
85, 7imbi12d 334 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ( G `  x )  =  Z  ->  ( F `  x )  =  Z )  <->  ( ( G `
 y )  =  Z  ->  ( F `  y )  =  Z ) ) )
98rspcv 3305 . . . . . . . . 9  |-  ( y  e.  A  ->  ( A. x  e.  A  ( ( G `  x )  =  Z  ->  ( F `  x )  =  Z )  ->  ( ( G `  y )  =  Z  ->  ( F `
 y )  =  Z ) ) )
103, 9syl6bi 243 . . . . . . . 8  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  -> 
( y  e.  dom  F  ->  ( A. x  e.  A  ( ( G `  x )  =  Z  ->  ( F `
 x )  =  Z )  ->  (
( G `  y
)  =  Z  -> 
( F `  y
)  =  Z ) ) ) )
1110com23 86 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  -> 
( A. x  e.  A  ( ( G `
 x )  =  Z  ->  ( F `  x )  =  Z )  ->  ( y  e.  dom  F  ->  (
( G `  y
)  =  Z  -> 
( F `  y
)  =  Z ) ) ) )
1211imp31 448 . . . . . 6  |-  ( ( ( ( ( F  Fn  A  /\  G  Fn  B )  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  /\  A. x  e.  A  ( ( G `  x
)  =  Z  -> 
( F `  x
)  =  Z ) )  /\  y  e. 
dom  F )  -> 
( ( G `  y )  =  Z  ->  ( F `  y )  =  Z ) )
1312necon3d 2815 . . . . 5  |-  ( ( ( ( ( F  Fn  A  /\  G  Fn  B )  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  /\  A. x  e.  A  ( ( G `  x
)  =  Z  -> 
( F `  x
)  =  Z ) )  /\  y  e. 
dom  F )  -> 
( ( F `  y )  =/=  Z  ->  ( G `  y
)  =/=  Z ) )
1413ss2rabdv 3683 . . . 4  |-  ( ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  /\  A. x  e.  A  ( ( G `  x
)  =  Z  -> 
( F `  x
)  =  Z ) )  ->  { y  e.  dom  F  |  ( F `  y )  =/=  Z }  C_  { y  e.  dom  F  |  ( G `  y )  =/=  Z } )
15 simpr1 1067 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  ->  A  C_  B )
161ad2antrr 762 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  ->  dom  F  =  A )
17 fndm 5990 . . . . . . . 8  |-  ( G  Fn  B  ->  dom  G  =  B )
1817ad2antlr 763 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  ->  dom  G  =  B )
1915, 16, 183sstr4d 3648 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  ->  dom  F  C_  dom  G )
2019adantr 481 . . . . 5  |-  ( ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  /\  A. x  e.  A  ( ( G `  x
)  =  Z  -> 
( F `  x
)  =  Z ) )  ->  dom  F  C_  dom  G )
21 rabss2 3685 . . . . 5  |-  ( dom 
F  C_  dom  G  ->  { y  e.  dom  F  |  ( G `  y )  =/=  Z }  C_  { y  e. 
dom  G  |  ( G `  y )  =/=  Z } )
2220, 21syl 17 . . . 4  |-  ( ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  /\  A. x  e.  A  ( ( G `  x
)  =  Z  -> 
( F `  x
)  =  Z ) )  ->  { y  e.  dom  F  |  ( G `  y )  =/=  Z }  C_  { y  e.  dom  G  |  ( G `  y )  =/=  Z } )
2314, 22sstrd 3613 . . 3  |-  ( ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  /\  A. x  e.  A  ( ( G `  x
)  =  Z  -> 
( F `  x
)  =  Z ) )  ->  { y  e.  dom  F  |  ( F `  y )  =/=  Z }  C_  { y  e.  dom  G  |  ( G `  y )  =/=  Z } )
24 fnfun 5988 . . . . . . 7  |-  ( F  Fn  A  ->  Fun  F )
2524ad2antrr 762 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  ->  Fun  F )
26 simpl 473 . . . . . . 7  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  F  Fn  A )
27 ssexg 4804 . . . . . . . 8  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  _V )
28273adant3 1081 . . . . . . 7  |-  ( ( A  C_  B  /\  B  e.  V  /\  Z  e.  W )  ->  A  e.  _V )
29 fnex 6481 . . . . . . 7  |-  ( ( F  Fn  A  /\  A  e.  _V )  ->  F  e.  _V )
3026, 28, 29syl2an 494 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  ->  F  e.  _V )
31 simpr3 1069 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  ->  Z  e.  W )
32 suppval1 7301 . . . . . 6  |-  ( ( Fun  F  /\  F  e.  _V  /\  Z  e.  W )  ->  ( F supp  Z )  =  {
y  e.  dom  F  |  ( F `  y )  =/=  Z } )
3325, 30, 31, 32syl3anc 1326 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  -> 
( F supp  Z )  =  { y  e.  dom  F  |  ( F `  y )  =/=  Z } )
34 fnfun 5988 . . . . . . 7  |-  ( G  Fn  B  ->  Fun  G )
3534ad2antlr 763 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  ->  Fun  G )
36 simpr 477 . . . . . . 7  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  G  Fn  B )
37 simp2 1062 . . . . . . 7  |-  ( ( A  C_  B  /\  B  e.  V  /\  Z  e.  W )  ->  B  e.  V )
38 fnex 6481 . . . . . . 7  |-  ( ( G  Fn  B  /\  B  e.  V )  ->  G  e.  _V )
3936, 37, 38syl2an 494 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  ->  G  e.  _V )
40 suppval1 7301 . . . . . 6  |-  ( ( Fun  G  /\  G  e.  _V  /\  Z  e.  W )  ->  ( G supp  Z )  =  {
y  e.  dom  G  |  ( G `  y )  =/=  Z } )
4135, 39, 31, 40syl3anc 1326 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  -> 
( G supp  Z )  =  { y  e.  dom  G  |  ( G `  y )  =/=  Z } )
4233, 41sseq12d 3634 . . . 4  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  -> 
( ( F supp  Z
)  C_  ( G supp  Z )  <->  { y  e.  dom  F  |  ( F `  y )  =/=  Z }  C_  { y  e. 
dom  G  |  ( G `  y )  =/=  Z } ) )
4342adantr 481 . . 3  |-  ( ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  /\  A. x  e.  A  ( ( G `  x
)  =  Z  -> 
( F `  x
)  =  Z ) )  ->  ( ( F supp  Z )  C_  ( G supp  Z )  <->  { y  e.  dom  F  |  ( F `  y )  =/=  Z }  C_  { y  e.  dom  G  |  ( G `  y )  =/=  Z } ) )
4423, 43mpbird 247 . 2  |-  ( ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  /\  A. x  e.  A  ( ( G `  x
)  =  Z  -> 
( F `  x
)  =  Z ) )  ->  ( F supp  Z )  C_  ( G supp  Z ) )
4544ex 450 1  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  C_  B  /\  B  e.  V  /\  Z  e.  W ) )  -> 
( A. x  e.  A  ( ( G `
 x )  =  Z  ->  ( F `  x )  =  Z )  ->  ( F supp  Z )  C_  ( G supp  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   dom cdm 5114   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  funsssuppss  7321  suppofss1d  7332  suppofss2d  7333  lincresunit2  42267
  Copyright terms: Public domain W3C validator