| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgtrisegint | Structured version Visualization version Unicode version | ||
| Description: A line segment between two sides of a triange intersects a segment crossing from the remaining side to the opposite vertex. Theorem 3.17 of [Schwabhauser] p. 33. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p |
|
| tkgeom.d |
|
| tkgeom.i |
|
| tkgeom.g |
|
| tgbtwnintr.1 |
|
| tgbtwnintr.2 |
|
| tgbtwnintr.3 |
|
| tgbtwnintr.4 |
|
| tgtrisegint.e |
|
| tgtrisegint.p |
|
| tgtrisegint.1 |
|
| tgtrisegint.2 |
|
| tgtrisegint.3 |
|
| Ref | Expression |
|---|---|
| tgtrisegint |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p |
. . . 4
| |
| 2 | tkgeom.d |
. . . 4
| |
| 3 | tkgeom.i |
. . . 4
| |
| 4 | tkgeom.g |
. . . . 5
| |
| 5 | 4 | ad2antrr 762 |
. . . 4
|
| 6 | tgtrisegint.e |
. . . . 5
| |
| 7 | 6 | ad2antrr 762 |
. . . 4
|
| 8 | tgbtwnintr.3 |
. . . . 5
| |
| 9 | 8 | ad2antrr 762 |
. . . 4
|
| 10 | tgbtwnintr.1 |
. . . . 5
| |
| 11 | 10 | ad2antrr 762 |
. . . 4
|
| 12 | simplr 792 |
. . . 4
| |
| 13 | tgbtwnintr.2 |
. . . . 5
| |
| 14 | 13 | ad2antrr 762 |
. . . 4
|
| 15 | simprl 794 |
. . . 4
| |
| 16 | tgtrisegint.1 |
. . . . . 6
| |
| 17 | 16 | ad2antrr 762 |
. . . . 5
|
| 18 | 1, 2, 3, 5, 11, 14, 9, 17 | tgbtwncom 25383 |
. . . 4
|
| 19 | 1, 2, 3, 5, 7, 9, 11, 12, 14, 15, 18 | axtgpasch 25366 |
. . 3
|
| 20 | 5 | ad2antrr 762 |
. . . . . . 7
|
| 21 | tgtrisegint.p |
. . . . . . . . 9
| |
| 22 | 21 | ad2antrr 762 |
. . . . . . . 8
|
| 23 | 22 | ad2antrr 762 |
. . . . . . 7
|
| 24 | 12 | ad2antrr 762 |
. . . . . . 7
|
| 25 | simplr 792 |
. . . . . . 7
| |
| 26 | 9 | ad2antrr 762 |
. . . . . . 7
|
| 27 | simprr 796 |
. . . . . . . 8
| |
| 28 | 27 | ad2antrr 762 |
. . . . . . 7
|
| 29 | simpr 477 |
. . . . . . 7
| |
| 30 | 1, 2, 3, 20, 23, 24, 25, 26, 28, 29 | tgbtwnexch2 25391 |
. . . . . 6
|
| 31 | 30 | ex 450 |
. . . . 5
|
| 32 | 31 | anim1d 588 |
. . . 4
|
| 33 | 32 | reximdva 3017 |
. . 3
|
| 34 | 19, 33 | mpd 15 |
. 2
|
| 35 | tgbtwnintr.4 |
. . 3
| |
| 36 | tgtrisegint.2 |
. . . 4
| |
| 37 | 1, 2, 3, 4, 35, 6, 8, 36 | tgbtwncom 25383 |
. . 3
|
| 38 | tgtrisegint.3 |
. . 3
| |
| 39 | 1, 2, 3, 4, 8, 10, 35, 6, 21, 37, 38 | axtgpasch 25366 |
. 2
|
| 40 | 34, 39 | r19.29a 3078 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-trkgc 25347 df-trkgb 25348 df-trkgcb 25349 df-trkg 25352 |
| This theorem is referenced by: krippenlem 25585 colperpexlem3 25624 |
| Copyright terms: Public domain | W3C validator |